Classification of Blighted Ovum Factors in Pregnant Women Using PSO-Based Naïve Bayes
DOI:
https://doi.org/10.34288/jri.v5i3.238Keywords:
Classification, naïve Bayes, particle swarm optimizationAbstract
Classification of Blighted Ovum Factors or undeveloped fetuses is carried out considering that many cases occur in pregnant women. Blighted Ovum is 60% of the causes of miscarriage. In Indonesia, it is found in 37% of every 100 pregnancies. Classification uses Naïve Bayes based on Particle Swarm Optimization (PSO), which only requires small training data to determine the parameter estimates needed in the classification process, and the use of Particle Swarm Optimization can increase accuracy and solve optimization problems with the process of selecting variable data and attribute data to create a questionnaire as a data collection method. The results of the classification of blighted Ovum in pregnant women using the Naïve Bayes algorithm with the Rapid Miner framework obtained an accuracy value of 71.56% with an Area Under Curve (AUC) of 0.674 included in the excellent classification category. After using the PSO optimization, the accuracy value rose to 79.82% with an Area Under the Curve of 0.764, including a good classification category. Naïve Bayes is a suitable method for classification, and PSO can improve the accuracy and AUC values .
Downloads
References
Adi Mhsd. (2021). Proses KDD (Knowledge Discovery In Database). https://adi.unggas.id/lecture/proses-kdd-knowledge-discovery-in-database/
Anggrayni, N. H., Mas’udah, E. K., & Triningsih, R. W. (2022). Faktor Determinan Kejadian Blighted Ovum. Jurnal Kebidanan, 11(2), 380. https://doi.org/https://doi.org/10.47560/keb.v11i2.380
Annisa Karnesyia. (2020). Blighted Ovum. https://www.haibunda.com/bundapedia/20220815101912-211-281708/blighted-ovum
Dr Rizal Fadli. (2022). Blighted Ovum. Halodoc.Com. https://www.halodoc.com/kesehatan/blighted-ovum
Han, J., & Kamber, M. (2006). Data Mining Concepts and Techniques Second Edition. Morgan Kaufmann.
Khadafy, A. R., & Wahoho, R. S. (2015). Penerapan Naive Bayes untuk Mengurangi Data Noise pada Klasifikasi Multi Kelas dengan Decision Tree. Journal of Intelligent Systems, 1(2), 136–142.
Mansur, Prahasto, T., & Farikhin. (2014). Particle Swarm Optimization Untuk Sistem Informasi Penjadwalan Resource Di Perguruan Tinggi. Jurnal Sistem Informasi Bisnis, 01, 11–19.
Normawati, D., Akbari, R., & Nurhusna, A. (2021). Diagnosis Dini Penyakit Preeklamsia Pada Ibu Hamil Dengan Metode K-Nearest Neighbor (Knn). 13(2), 69–78. https://www.unisbank.ac.id/ojs/index.php/fti2/article/view/8839
Rian Santoso, M., & Musa, P. (2021). Rekomendasi Kesehatan Janin Dengan Penerapan Algoritma C5.0 Menggunakan Classifying Cardiotocography Dataset. Jurnal Simantec, 9(2), 65–76.
Romi Satrio, W. (2020). Data Mining. https://romisatriawahono.net/dm/
Salsabila MR. (2023). 3 Tipe Proses Dataset dalam Machine Learning. https://dqlab.id/3-tipe-proses-dataset-dalam-machine-learning
Sayed, F., & Burhanuddin. (2018). Penggunaan Metode Support Vector Machine Untuk Mengklasifikasi Dan Memprediksi Angkutan Udara Jenis Penerbangan Domestik dan Penerbangan Internasional Di Banda Aceh. Jurnal Sistem Informasi, 2(2), 1–10.
Sianturi, F. A. (2019). Analisa Metode Teorema Bayes dalam Mendiagnosa Keguguran pada Ibu Hamil Berdasarkan Jenis Makanan. Teknik Informasi Dan Komputer (Tekinkom), 2(1), 87–92. http://jurnal.murnisadar.ac.id/index.php/Tekinkom/article/view/78
Sugiyono. (2013). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung. Alphabet.
Sugiyono. (2017). Metode Penelitian Kuantitatif, Kualitatif, dan R&D (Cetakan 26). CV. Alfabeta.
Sulihati, I., Syukur, A., & Marjuni, A. (2022). Deteksi Kesehatan Janin Menggunakan Decision Tree dan Feature Forward Selection. 4(3), 1658–1664. https://doi.org/10.47065/bits.v4i3.2672
Wibawa, A. P., Guntur, M., Purnama, A., Akbar, M. F., & Dwiyanto, F. A. (2018). Metode - Metode Klasifikasi. Prosiding Seminar Ilmu Komputer Dan Teknologi Informasi, 3(1), 134–138.
Yolanda, V., Cholissodin, I., & Adikara, P. P. (2021). Klasifikasi Diagnosis Penyakit Diabetes Gestasional pada Ibu Hamil menggunakan Algoritme Neighbor Weighted K-Nearest Neighbor ( NWKNN ). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(4), 1310–1321.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Febryo Ponco Sulistyo, Endang Sri Palupi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.