Sentiment Analysis of Digital Wallet Service Users Using Naïve Bayes Classifier and Particle Swarm Optimization

Authors

  • Alvie Delia Cahyani STMIK Nusa Mandiri
  • Tati Mardiana Universitas Bina Sarana Informatika
  • Laela Kurniawati STMIK Nusa Mandiri
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v2i4.114

Keywords:

Digital Wallet, Twitter, Sentiment Analysis, Naïve Bayes Classifier, Particle Swarm Optimization

Abstract

Digital wallet services adequately provide many benefits to their users. However, not all users of digital wallet services have a favourable opinion of the service. Therefore, online transportation service companies need to carry out an analysis to determine general sentiment towards their products. The Naïve Bayes Classifier method represents a simple, fast method with excellent accuracy and performs comparatively well for classifying data. However, the Naïve Bayes Classifier method assumes that the attributes are independent, so it can cause the accuracy to be less than optimal. This study aims to improve the accuracy of the Naive Bayes classification for classifying public opinion on digital wallet services using Particle Swarm Optimization. This study manages data from Twitter as much as 490 tweet data. The test results with the confusion matrix and ROC curves show an increase in the accuracy of the Naïve Bayes Classifier method for the Dana digital wallet from 60.00% to 91.67% and the iSaku digital wallet from 53.23% to 85.00%. The T-test and ANOVA test results show that the test results of both classification methods provide significant differences in the accuracy value.

Downloads

Download data is not yet available.

References

Aaputra, S. A., Didi Rosiyadi, Windu Gata, & Syepry Maulana Husain. (2019). Sentiment Analysis Analisis Sentimen E-Wallet Pada Google Play Menggunakan Algoritma Naive Bayes Berbasis Particle Swarm Optimization. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 3(3), 377–382. https://doi.org/10.29207/resti.v3i3.1118

Budiansyah, A. (2020). GoPay & OVO Cs Kian Populer, Transaksi Tembus Rp 145 T. Retrieved April 23, 2020, from CNBC Indonesia website: https://www.cnbcindonesia.com/tech/20200204112543-37-135041/gopay-ovo-cs-kian-populer-transaksi-tembus-rp-145-t

Clinten, B. (2019). Pengguna Aktif Harian Twitter Indonesia Diklaim Terbanyak. Retrieved April 24, 2020, from Kompas website: https://tekno.kompas.com/read/2019/10/30/16062477/pengguna-aktif-harian-twitter-indonesia-diklaim-terbanyak

Devita, V. D. (2019). Siapa Aplikasi E-wallet dengan Pengguna Terbanyak di Indonesia? Retrieved June 11, 2020, from iPrice Group website: https://iprice.co.id/trend/insights/e-wallet-terbaik-di-indonesia/

Hermanto, H., Mustopa, A., & Kuntoro, A. Y. (2020). Algoritma Klasifikasi Naive Bayes Dan Support Vector Machine Dalam Layanan Komplain Mahasiswa. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 5(2), 211–220. https://doi.org/10.33480/jitk.v5i2.1181

Indonesia, B. (2020). Informasi Perizinan Penyelenggara dan Pendukung Jasa Sistem Pembayaran. Retrieved April 23, 2020, from Bank Indonesia website: https://www.bi.go.id/id/sistem-pembayaran/informasi-perizinan/uang-elektronik/penyelenggara-berizin/Contents/Default.aspx

Kurniawan, I., & Susanto, A. (2019). Implementasi Metode K-Means dan Naïve Bayes Classifier untuk Analisis Sentimen Pemilihan Presiden (Pilpres) 2019. Eksplora Informatika, 9(1), 1–10. https://doi.org/10.30864/eksplora.v9i1.237

Mahendrajaya, R., Buntoro, G. A., & Setyawan, M. B. (2019). Analisis Sentimen Pengguna Gopay Menggunakan Metode Lexicon Based Dan Support Vector Machine. Komputek, 3(2), 52. https://doi.org/10.24269/jkt.v3i2.270

Maulana, A. (2016). Twitter Rahasiakan Jumlah Pengguna di Indonesia. Retrieved April 24, 2020, from CNN Indonesia website: https://www.cnnindonesia.com/teknologi/20160322085045-185-118939/twitter-rahasiakan-jumlah-pengguna-di-indonesia

Pertiwi, M. W. (2019). Analisis sentimen opini publik mengenai sarana dan transportasi mudik tahun 2019 pada twitter menggunakan algoritma naïve bayes, neural network, KNN dan SVM. Inti Nusa Mandiri, 14(1), 27–32.

Pratama, K. A., Pradnyana, G. A., & Arthana, I. K. R. (2020). Pengembangan Sistem Cerdas Untuk Prediksi Daftar Kembali Mahasiswa Baru Dengan Metode Naive Bayes (Studi Kasus: Universitas Pendidikan Ganesha). Sintech Journal, 3(1), 22–34.

Saidah, S., & Mayary, J. (2020). Analisis Sentimen Pengguna Twitter Terhadap Dompet Elektronik Dengan Metode Lexicon Based Dan K – Nearest Neighbor. Jurnal Ilmiah Informatika Komputer, 25(1).

Downloads

Published

2023-10-25

How to Cite

Cahyani, A. D., Mardiana, T., & Kurniawati, L. (2023). Sentiment Analysis of Digital Wallet Service Users Using Naïve Bayes Classifier and Particle Swarm Optimization. Jurnal Riset Informatika, 2(4), 241–250. https://doi.org/10.34288/jri.v2i4.114

Most read articles by the same author(s)

1 2 > >>