COMPARISON OF CLASSIFICATION ALGORITHMS FOR ANALYSIS SENTIMENT OF FORMULA E IMPLEMENTATION IN INDONESIA
DOI:
https://doi.org/10.34288/jri.v4i3.187Keywords:
Formula E, Tweet, Sentiment Analysis, Support Vector Machine, Naive BayesAbstract
The Formula E racing series has become one of the world's most prestigious competitions. In 2022, Indonesia hosted the famous Formula E race. The event possesses the potential for economic benefits for Indonesia worth 78 million euros through the arrival of 35,000 spectators. Indonesians are enthusiastic about Formula E since it allows their nation to encourage tourists and gain international prominence. However, some people do not support this event. Since they regard that amid the COVID-19 pandemic, it is preferable for the government to focus on people affected by the pandemic rather than support a Formula E event. This study compares the Support Vector Machine and Naive Bayes algorithms in classifying public opinion in the Formula E race. This study gets its information from user comments on social media platforms, especially Twitter. The stages start with text preprocessing and include cleaning, case folding, tokenization, filtering, and stemming. Proceed with weighting using the TF-IDF approach. Data testing uses a confusion matrix to evaluate the classification results by testing accuracy, precision, and recall. Categorizing public opinion using the SVM algorithm has an accuracy of 82 percent, a precision of 97.86 percent, and a recall of 77.90 percent. On the other hand, the accuracy of the Naive Bayes technique is more limited, at 87.54 percent. Society's opinion on Twitter shows positive sentiment towards implementing Formula E.
Downloads
References
Amsury, F., Ruhyana, N., Saputra, I., & Sulistyowati, D. N. (2020). Classification of Customer Complaints on Instagram Comments Using Naïve Bayes Algorithm With N-Gram Feature Extension. Jurnal Techno Nusa Mandiri, 17(2), 109–116. https://doi.org/10.33480/techno.v17i2.1632
Barfian, E., Iswanto, B. H., & Isa, S. M. (2017). Twitter Pornography Multilingual Content Identification Based on Machine Learning. Procedia Computer Science, 116, 129–136. https://doi.org/10.1016/j.procs.2017.10.024
Berliana, G., Shaufiah, S.T., M. T., & Siti Sa’adah, S.T., M. T. (2018). Klasifikasi Posting Tweet mengenai Kebijakan Pemerintah Menggunakan Naive Bayesian Classification. E-Proceeding of Engineering, 5(1), 1562–1569. Bandung: Telkom University. Retrieved from https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/6170
Demidova, L., & Klyueva, I. (2017). SVM classification: Optimization with the SMOTE algorithm for the class imbalance problem. 2017 6th Mediterranean Conference on Embedded Computing, MECO 2017 - Including ECYPS 2017, Proceedings, (June), 17–20. https://doi.org/10.1109/MECO.2017.7977136
Fatemi, A., Ionel, D. M., Popescu, M., & Demerdash, N. A. O. (2016). Design optimization of spoke-type PM motors for Formula e racing cars. ECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings. https://doi.org/10.1109/ECCE.2016.7855032
Fatmawati, F., & Affandes, M. (2018). Klasifikasi Keluhan Menggunakan Metode Support Vector Machine (SVM) Pada Akun Facebook Group iRaise Helpdesk. Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer Dan Teknologi Informasi, 3(1), 24. https://doi.org/10.24014/coreit.v3i1.3552
Gata, W., Amsury, F., Wardhani, N. K., Sugiyarto, I., Sulistyowati, D. N., & Saputra, I. (2019). Informative Tweet Classification of the Earthquake Disaster Situation in Indonesia. 5th International Conference on Computing Engineering and Design, ICCED 2019. https://doi.org/10.1109/ICCED46541.2019.9161135
Hall, T. J. (2017). An Analysis of Braking Behavior in Formula-E® Racing. SAE Technical Papers, Part F1301(September). https://doi.org/10.4271/2017-01-2533
Kartinawati, E., & Wiyawan, H. (2021). ‘ Penyelenggaraan Formula E Jakarta Pada Program Aiman Kompas Tv. Jurnal Assosiativ, 1(1), 1–10.
Liu, X., Fotouhi, A., & Auger, D. J. (2020). Optimal energy management for formula-E cars with regulatory limits and thermal constraints. Applied Energy, 279(September), 115805. https://doi.org/10.1016/j.apenergy.2020.115805
Mathew, J., Luo, M., Pang, C. K., & Chan, H. L. (2015). Kernel-based SMOTE for SVM classification of imbalanced datasets. IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, 1127–1132. https://doi.org/10.1109/IECON.2015.7392251
Putu, N., Naraswati, G., Rosmilda, D. C., Desinta, D., Statistika, P. D., & Stis, P. S. (2021). Analisis Sentimen Publik dari Twitter Tentang Kebijakan Penanganan Covid-19 di Indonesia dengan Naive Bayes Classification. Sistemasi: Jurnal Sistem Informasi, 10(1), 228–238. Retrieved from http://sistemasi.ftik.unisi.ac.id/index.php/stmsi/article/view/1179
Robeers, T. (2019). ‘We go green in Beijing’: situating live television, urban motor sport and environmental sustainability by means of a framing analysis of TV broadcasts of Formula E. Sport in Society, 22(12), 2089–2103. https://doi.org/10.1080/17430437.2018.1558212
Tanjung, R. (2021). Instruksi Gubernur DKI Jakarta Tentang Penyelenggaraan Balap Formula E Dalam Tinjauan Siyasah Islam. Al Ahkam, 17(2), 9–21. https://doi.org/10.37035/ajh.v17i2.5263
Tsytsarau, M., & Palpanas, T. (2012). Survey on mining subjective data on the web. Data Mining and Knowledge Discovery, 24(3), 478–514. https://doi.org/10.1007/s10618-011-0238-6
Windasari, I. P., Uzzi, F. N., & Satoto, K. I. (2018). Sentiment analysis on Twitter posts: An analysis of positive or negative opinion on GoJek. Proceedings - 2017 4th International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE 2017, 2018-Janua, 266–269. https://doi.org/10.1109/ICITACEE.2017.8257715
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Fachri Amsury, Nanang Ruhyana, Tati Mardiana

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.