COMBINING BOOTSTRAPPING AND GENETIC ALGORITHM BASED ON FEATURE SELECTION FOR FRANCHISE LOCATION PROSPECT PREDICTION

Authors

  • Tati Mardiana Universitas Bina Sarana Informatika
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v3i3.92

Keywords:

bootstrapping, genetic algorithm, franchise location, feature selection, prediction

Abstract

Location selection is crucial in the franchise fast-food industry. A thorough location selection model paired with a proper analytical technique can considerably improve the performance of placement decisions, attract more customers, and boost market share and profitability. Franchise location data sets have an imbalanced class nature. The franchise location prospect prediction performance decreased as a result of the dataset's noisy characteristics. We developed a hybrid approach to improve franchise location prospect prediction performance in this study. It combines Bootstrapping to address class imbalance problems and a Genetic Algorithm (GA) to select relevant features in the franchise location prospect prediction. We experimented with five different classification methods (Naive Bayes, C4.5, Random Forest, ID3, Gradient Boosted Trees). The results show that almost all classifiers that use Bootstrapping and GA outperform the original technique. We employ the Confusion Matrix and Root Mean Squared Error  (RMSE) to examine the proposed method's performance. The test results demonstrate that the proposed method considerably enhances the franchise location prospect's classification performance. 

Downloads

Download data is not yet available.

References

Agustian, A. A., & Bisri, A. (2019). Data Mining Optimization Using Sample Bootstrapping and Particle Swarm Optimization in the Credit Approval Classification. Indonesian Journal of Artificial Intelligence and Data Mining, 2(1), 18–27. https://doi.org/10.24014/ijaidm.v2i1.6299

Chen, L. F., & Tsai, C. T. (2016). Data mining framework based on rough set theory to improve location selection decisions: A case study of a restaurant chain. Tourism Management, 53, 197–206. https://doi.org/10.1016/j.tourman.2015.10.001

Diana. (2017). Sistem Pendukung Keputusan Menentukan Lokasi Usaha Waralaba Menggunakan Metode Bayes. Jurnal Ilmiah Matriks, 19(3), 41–52.

Feng, W., Huang, W., & Ren, J. (2018). Class imbalance ensemble learning based on the margin theory. Applied Sciences (Switzerland), 8(5). https://doi.org/10.3390/app8050815

Hermawan, H., Fauzi, A., Cahyana, Y., & Handayani, H. H. (2020). Performa Optimal Penerapan Algoritma genetika Pada Penjadwalan Mata Kuliah. Conference on Innovation and Application of Science and Technology (CIASTECH 2020), (02 Desember 2020), 683–690.

Khumaidi, A. (2011). Klasifikasi Data Prospektus Lokasi Waralaba Dengan Algoritma C.45. Paradigma, Vol XIII N(2 September 2011).

Mardiana, T. (2021). Laporan Penelitian : Model Klasifikasi Prospek Lokasi Waralaba Makanan Cepat Saji.

Naufal, A. R., Satria, R., & Syukur, A. (2015). Penerapan Bootstrapping untuk Ketidakseimbangan Kelas dan Weighted Information Gain untuk Feature Selection pada Algoritma Support Vector Machine untuk Prediksi Loyalitas Pelanggan. Journal of Intelligent Systems, 1(2), 98–108.

Nguyen, T. M. T., Day, J. Der, Wang, C. N., & Dang, H. S. (2017). Predicting of the performance of franchise industry using Grey models - Case study in United States. Proceedings - 2017 International Conference on System Science and Engineering, ICSSE 2017, (June 2020), 617–620. https://doi.org/10.1109/ICSSE.2017.8030948

Nuhayati, M. U., Dedih, D., & Mulyana, J. (2017). Sistem Pendukung Keputusan Untuk Menentukan Lokasi Usaha Kuliner Yang Strategis Menggunakan Metode Naive Bayes. Jurnal Interkom: Jurnal Publikasi Ilmiah Bidang Teknologi Informasi Dan Komunikasi, 12(1), 4–12. https://doi.org/10.35969/interkom.v12i1.22

P, N. E., Widya Sihwi, S., & Anggrainingsih, R. (2016). Sistem Penunjang Keputusan Untuk Menentukan Lokasi Usaha Dengan Metode Simple Additive Weighting (SAW). Jurnal Teknologi & Informasi ITSmart, 3(1), 41. https://doi.org/10.20961/its.v3i1.648

Rao, J. N., & Ramesh, M. (2019). A review on data mining & big data, machine learning techniques. International Journal of Recent Technology and Engineering, 7(6), 914–916.

Rosado-Serrano, A., Paul, J., & Dikova, D. (2018). International franchising: A literature review and research agenda. Journal of Business Research, 85(September 2017), 238–257. https://doi.org/10.1016/j.jbusres.2017.12.049

Wahono, R. S., & Herman, N. S. (2014). Genetic feature selection for software defect prediction. Advanced Science Letters, 20(1), 239–244. https://doi.org/10.1166/asl.2014.5283

Younas, I., Kamrani, F., Bashir, M., & Schubert, J. (2018). Efficient genetic algorithms for optimal assignment of tasks to teams of agents. Neurocomputing, 314, 409–428. https://doi.org/10.1016/j.neucom.2018.07.008

Downloads

Published

2021-06-30

How to Cite

Mardiana, T. (2021). COMBINING BOOTSTRAPPING AND GENETIC ALGORITHM BASED ON FEATURE SELECTION FOR FRANCHISE LOCATION PROSPECT PREDICTION. Jurnal Riset Informatika, 3(3), 299–304. https://doi.org/10.34288/jri.v3i3.92

Most read articles by the same author(s)

1 2 > >>