COMBINING BOOTSTRAPPING AND GENETIC ALGORITHM BASED ON FEATURE SELECTION FOR FRANCHISE LOCATION PROSPECT PREDICTION
DOI:
https://doi.org/10.34288/jri.v3i3.92Keywords:
bootstrapping, genetic algorithm, franchise location, feature selection, predictionAbstract
Location selection is crucial in the franchise fast-food industry. A thorough location selection model paired with a proper analytical technique can considerably improve the performance of placement decisions, attract more customers, and boost market share and profitability. Franchise location data sets have an imbalanced class nature. The franchise location prospect prediction performance decreased as a result of the dataset's noisy characteristics. We developed a hybrid approach to improve franchise location prospect prediction performance in this study. It combines Bootstrapping to address class imbalance problems and a Genetic Algorithm (GA) to select relevant features in the franchise location prospect prediction. We experimented with five different classification methods (Naive Bayes, C4.5, Random Forest, ID3, Gradient Boosted Trees). The results show that almost all classifiers that use Bootstrapping and GA outperform the original technique. We employ the Confusion Matrix and Root Mean Squared Error (RMSE) to examine the proposed method's performance. The test results demonstrate that the proposed method considerably enhances the franchise location prospect's classification performance.
Downloads
References
Agustian, A. A., & Bisri, A. (2019). Data Mining Optimization Using Sample Bootstrapping and Particle Swarm Optimization in the Credit Approval Classification. Indonesian Journal of Artificial Intelligence and Data Mining, 2(1), 18–27. https://doi.org/10.24014/ijaidm.v2i1.6299
Chen, L. F., & Tsai, C. T. (2016). Data mining framework based on rough set theory to improve location selection decisions: A case study of a restaurant chain. Tourism Management, 53, 197–206. https://doi.org/10.1016/j.tourman.2015.10.001
Diana. (2017). Sistem Pendukung Keputusan Menentukan Lokasi Usaha Waralaba Menggunakan Metode Bayes. Jurnal Ilmiah Matriks, 19(3), 41–52.
Feng, W., Huang, W., & Ren, J. (2018). Class imbalance ensemble learning based on the margin theory. Applied Sciences (Switzerland), 8(5). https://doi.org/10.3390/app8050815
Hermawan, H., Fauzi, A., Cahyana, Y., & Handayani, H. H. (2020). Performa Optimal Penerapan Algoritma genetika Pada Penjadwalan Mata Kuliah. Conference on Innovation and Application of Science and Technology (CIASTECH 2020), (02 Desember 2020), 683–690.
Khumaidi, A. (2011). Klasifikasi Data Prospektus Lokasi Waralaba Dengan Algoritma C.45. Paradigma, Vol XIII N(2 September 2011).
Mardiana, T. (2021). Laporan Penelitian : Model Klasifikasi Prospek Lokasi Waralaba Makanan Cepat Saji.
Naufal, A. R., Satria, R., & Syukur, A. (2015). Penerapan Bootstrapping untuk Ketidakseimbangan Kelas dan Weighted Information Gain untuk Feature Selection pada Algoritma Support Vector Machine untuk Prediksi Loyalitas Pelanggan. Journal of Intelligent Systems, 1(2), 98–108.
Nguyen, T. M. T., Day, J. Der, Wang, C. N., & Dang, H. S. (2017). Predicting of the performance of franchise industry using Grey models - Case study in United States. Proceedings - 2017 International Conference on System Science and Engineering, ICSSE 2017, (June 2020), 617–620. https://doi.org/10.1109/ICSSE.2017.8030948
Nuhayati, M. U., Dedih, D., & Mulyana, J. (2017). Sistem Pendukung Keputusan Untuk Menentukan Lokasi Usaha Kuliner Yang Strategis Menggunakan Metode Naive Bayes. Jurnal Interkom: Jurnal Publikasi Ilmiah Bidang Teknologi Informasi Dan Komunikasi, 12(1), 4–12. https://doi.org/10.35969/interkom.v12i1.22
P, N. E., Widya Sihwi, S., & Anggrainingsih, R. (2016). Sistem Penunjang Keputusan Untuk Menentukan Lokasi Usaha Dengan Metode Simple Additive Weighting (SAW). Jurnal Teknologi & Informasi ITSmart, 3(1), 41. https://doi.org/10.20961/its.v3i1.648
Rao, J. N., & Ramesh, M. (2019). A review on data mining & big data, machine learning techniques. International Journal of Recent Technology and Engineering, 7(6), 914–916.
Rosado-Serrano, A., Paul, J., & Dikova, D. (2018). International franchising: A literature review and research agenda. Journal of Business Research, 85(September 2017), 238–257. https://doi.org/10.1016/j.jbusres.2017.12.049
Wahono, R. S., & Herman, N. S. (2014). Genetic feature selection for software defect prediction. Advanced Science Letters, 20(1), 239–244. https://doi.org/10.1166/asl.2014.5283
Younas, I., Kamrani, F., Bashir, M., & Schubert, J. (2018). Efficient genetic algorithms for optimal assignment of tasks to teams of agents. Neurocomputing, 314, 409–428. https://doi.org/10.1016/j.neucom.2018.07.008
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Tati Mardiana

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.