CLASSIFICATION OF STUDENT SATISFACTION WITH ONLINE LECTURE

Authors

  • Nanang Ruhyana Universitas Nusa Mandiri
  • Tati Mardiana Universitas Nusa Mandiri
  • Fachri Amsury Universitas Nusa Mandiri
  • Daning Nur Sulistyowati Universitas Nusa Mandiri
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v4i1.144

Keywords:

covid 19, data mining, online, k-NN, decision tree

Abstract

Abstra Covid-19 has had a significant impact on people's lives, resulting in the paralysis of almost the entire economy and education, especially in the education sector, resulting in many students being unable to carry out teaching and learning activities at schools or universities. Based on this, the Ministry of Education and Culture has issued an appeal to stop face-to-face teaching and learning activities at schools and universities and replace them with distance or online learning. Resulting in teaching and learning activities to be less than optimal for students or students, there is dissatisfaction with the distance or online learning system, the purpose of this study is to measure the level of student satisfaction with online lectures by applying data mining techniques, classifying the level of online learning satisfaction using an online learning approach. k-NN algorithm and Decision Tree with 100 questionnaire data that has been collected from active students who carry out online lectures with an accuracy rate of 96.00% from the k-NN algorithm and a satisfied precision value of 95.51%, a satisfied recall value of 98.84% on a precision value the dissatisfied class is 90.91%, the recall value of the dissatisfied class is 71.43%. While the accuracy results using the Decision Tree algorithm approach is lower with an accuracy of 95.00%. based on research results that the level of student satisfaction with distance learning or online is quite high.

 

Downloads

Download data is not yet available.

References

Aulianita, R. (2016). Komparasi Metode K-Nearest Neighbors dan Support Vector Machine Pada Sentiment Analysis Review Kamera. Journal Speed – Sentra Penelitian Engineering Dan Edukasi, 8(3), 71–77. Retrieved from http://ijns.org/journal/index.php/speed/article/view/995

Damanik, A. R., Sumijan, S., & Nurcahyo, G. W. (2021). Prediksi Tingkat Kepuasan dalam Pembelajaran Daring Menggunakan Algoritma Naïve Bayes. Jurnal Sistim Informasi Dan Teknologi, 3, 88–94. https://doi.org/10.37034/jsisfotek.v3i3.137

Fitriani, Y., Defit, S., & Nurcahyo, G. W. (2021). Prediksi Hasil Belajar Siswa Secara Daring pada Masa Pandemi COVID-19 Menggunakan Metode C4.5. Jurnal Sistim Informasi Dan Teknologi, 3. https://doi.org/10.37034/jsisfotek.v3i3.149

Mulyana, M., Rainanto, B. H., Astrini, D., & Puspitasari, R. (2020). Persepsi Mahasiswa Atas Penggunaan Aplikasi Perkuliahan Daring Saat Wabah Covid-19. JAS-PT (Jurnal Analisis Sistem Pendidikan Tinggi Indonesia), 4(1), 47. https://doi.org/10.36339/jaspt.v4i1.301

Musu, W., Simpen, W., & Samsie, I. (2021). Identifikasi Pola Pembelajaran Daring dimasa Pandemi Covid-19 menggunakan Teknik Data Mining Identification of Online Learning Patterns during the Covid-19 Pandemic using Data Mining Techniques. 11–20. https://doi.org/10.30818/jpkm.2021.2060302

Napaswati. (2020). Analisis Situasi Pembelajaran IPA Fisika dengan Metode Daring di Tengah Wabah COVID-19 (Studi Kasus Peserta Didik MTS DDI Seppange Kabupaten Bone). Karst Jurnal Pendidikan Fisika Dan Terapannya, 3(1), 6–12. Retrieved from http://ejournals.umma.ac.id/index.php/karts/article/view/546

Nasution, D. A., Khotimah, H. H., & Chamidah, N. (2019). Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN. Computer Engineering, Science and System Journal, 4(1), 78. https://doi.org/10.24114/cess.v4i1.11458

Natuzzuhriyyah, A., & Nafisah, N. (2021). Klasifikasi Tingkat Kepuasan Mahasiswa Terhadap Pembelajaran Secara Daring Menggunakan Algoritma Naïve Bayes. Techno Xplore : Jurnal Ilmu Komputer Dan Teknologi Informasi, 6(2), 61–67. https://doi.org/10.36805/technoxplore.v6i2.1377

Palupi, E. S. (2021). Prediction Of Android Handphone Sales During Pandemic Using Naïve Bayes And K-Nn Methods Based On Particle Swarm Optimization. Jurnal Riset Informatika, 4(1), 23–28. Retrieved from http://ejournal.kresnamediapublisher.com/index.php/jri/article/view/279

Putu, N., Naraswati, G., Rosmilda, D. C., Desinta, D., Statistika, P. D., & Stis, P. S. (2021). Analisis Sentimen Publik dari Twitter Tentang Kebijakan Penanganan Covid-19 di Indonesia dengan Naive Bayes Classification. Jurnal SISTEMASI, 10(1), 228–238. Retrieved from http://sistemasi.ftik.unisi.ac.id/index.php/stmsi/article/view/1179

Rohman, A., & Mujiyono, S. (2020). Analisis Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Keaktifan Peserta Pelatihan Pembuatan Dokumen Ilmiah Secara Daring. Multimatrix, 2(2), 32–35. Retrieved from http://jurnal.unw.ac.id:1254/index.php/mm/article/view/947

Rosandy, T. (2016). Perbandingan Metode Naive Bayes Classifier dengan Metode Decision Tree Untuk Menganalisa Kelancaran Pembiayaan (Study Kasus : KSPPS / BMT AL-FADHILA. Jurnal TIM Darmajaya, 2(1), 52–62. Retrieved from https://jurnal.darmajaya.ac.id/index.php/jtim/article/view/648

Susilowati, E., Sabariah, M. K., & Gozali, A. A. (2015). Impelentasi Metode Support Vector Machine Untuk Melakukan Klasifikasi Kemacetan Lalu Lintas Pada Twitter. E-Proceeding of Engineering, 2(1), 1478–1484. Retrieved from https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/2578

Takdirillah, R. (2020). Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Sebagai Pendukung Informasi Strategi Penjualan. Edumatic : Jurnal Pendidikan Informatika, 4(1), 37–46. https://doi.org/10.29408/edumatic.v4i1.2081

Tsytsarau, M., & Palpanas, T. (2012). Survey on mining subjective data on the web. Data Mining and Knowledge Discovery, 24(3), 478–514. https://doi.org/10.1007/s10618-011-0238-6

Downloads

Published

2021-12-14

How to Cite

Ruhyana, N., Mardiana, T., Amsury, F., & Sulistyowati, D. N. (2021). CLASSIFICATION OF STUDENT SATISFACTION WITH ONLINE LECTURE. Jurnal Riset Informatika, 4(1), 105–110. https://doi.org/10.34288/jri.v4i1.144

Most read articles by the same author(s)

1 2 > >>