IMPLEMENTATION OF SUPPORT VECTOR MACHINE, PARTICLE SWARM OPTIMIZATION, AND NAÏVE BAYES ALGORITHMS IN SENTIMENT ANALYSIS OF PRODUCT REVIEWS: A CASE STUDY OF E-COMMERCE LAZADA

Authors

  • Mery Oktaviyanti Puspitaningtyas Universitas Nusa Mandiri
  • Kartika Puspita Universitas Nusa Mandiri
  • Yuris Alkhalifi Universitas Nusa Mandiri
  • Yulita Ayu Wardani Universitas Nusa Mandiri
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v7i2.362

Keywords:

Naïve Bayes, Particle Swarm Optimization, Ulasan Produk, Sentiment Analysis, Support Vector Machine

Abstract

Sentiment analysis is pivotal in deciphering customer opinions and attitudes towards products on e-commerce platforms such as Lazada. Machine learning algorithms like Support Vector Machine (SVM), SVM with Particle Swarm Optimization (PSO), and Naïve Bayes (NB) are leveraged to automate this process, aiding decision-making in business settings. This study specifically aims to assess the performance of SVM, SVM + PSO, and NB in analyzing sentiment from Lazada product reviews, focusing on key metrics like accuracy and Area Under the Curve (AUC). Using a dataset of Lazada reviews, each algorithm is rigorously trained and evaluated. SVM achieves 72.74% accuracy and an AUC of 0.893, while integrating PSO boosts accuracy significantly to 84.84% with an AUC of 0.898. In contrast, NB achieves 75.34% accuracy and an AUC of 0.663. These results highlight SVM + PSO's superior performance in sentiment classification compared to SVM and NB. The findings suggest that SVM + PSO presents a robust solution for sentiment analysis in e-commerce, surpassing traditional SVM and NB methods in accuracy and AUC metrics. This underscores the potential of optimization techniques like PSO to enhance machine learning algorithms for effective sentiment analysis in practical e-commerce applications.

Downloads

Download data is not yet available.

References

Arsi, P., Wahyudi, R., & Waluyo, R. (2021). Optimasi SVM Berbasis PSO pada Analisis Sentimen Wacana Pindah Ibu Kota Indonesia. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(2), 231–237. https://doi.org/10.29207/resti.v5i2.2698

Berliani, S., & Lestari, S. (2024). Analisis Sentimen Opini Masyarakat Terhadap Stadion Jakarta Internasional Stadium (Jis) Pada Twitter Dengan Perbandingan Metode Naive Bayes Dan Support Vector Machine. Jurnal Sains Dan Teknologi, 5(3), 951–960.

Cheng, N. S., Radzuan, N. F. M., & Abd Rani, M. N. (2021). Movie Recommender System using Supervised Learning Techniques. Proceedings of Undergraduate Research Conference 2021 (URC 2021), 33–41.

Fitriana, G. F. (2021). Optimasi Performansi Pengendalian Robot Swarm menggunakan Logika Fuzzy Tipe 2-Particle Swarm Optimazation. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(3), 602–608. https://doi.org/10.29207/resti.v5i3.3194

Hadi, S. W., & Kurniawan, W. (2022). Perbandingan Algoritma Regresi dengan Optimasi PSO Search dan Linear Forward Selection. Journal Speed – Sentra Penelitian Engineering Dan Edukasi, 14(1), 50–56.

Hasri, C. F., & Alita, D. (2022). PENERAPAN METODE NAÏVE BAYES CLASSIFIER DAN SUPPORT VECTOR MACHINE PADA ANALISIS SENTIMEN TERHADAP DAMPAK VIRUS CORONA DI TWITTER. Jurnal Informatika Dan Rekayasa Perangkat Lunak (JATIKA), 3(2), 145–160. http://jim.teknokrat.ac.id/index.php/informatika

Kahfi, A. H., Prihatin, T., Sudradjat, A., Wijaya, G., Of, F., Technology, I., Mandiri, U. N., Science, C., Bina, U., Informatika, S., Bina, U., Informatika, S., Of, F., Technology, I., & Mandiri, U. N. (2024). THE RIGHT STEPS TOWARDS GRADUATION : NB-PSO SMART COMBINATION LANGKAH TEPAT MENUJU KELULUSAN : KOMBINASI CERDAS NB-PSO UNTUK PREDIKSI KELULUSAN MAHASISWA. 5(2), 607–614.

Kurniati, K., & Wardana, R. R. (2021). Penerapan Algoritma Particle Swarm Optimization pada Segmentasi Citra Pengenalan Aksara Bugis. Jurnal Pengembangan Sistem Informasi Dan Informatika, 1(3), 138–148. https://doi.org/10.47747/jpsii.v1i3.177

Lumbantobing, H. br, & Rahmaddeni, R. (2023). Prediksi Harga Cryptocurrency Menggunakan Algoritma Support Vector Machine. Innovative: Journal Of Social Science Research, 3(2), 7348–7355. http://j-innovative.org/index.php/Innovative/article/view/1213%0Ahttps://j-innovative.org/index.php/Innovative/article/download/1213/919

Muhardeny, M., Irfani, M. H., & Alie, J. (2023). Penjadwalan Mata Pelajaran Menggunakan Algoritma Particle Swarm Optimization (PSO) Pada SMPIT Mufidatul Ilmi. Jurnal Software Engineering and Computational Intelligence, 1(1), 51–63. https://doi.org/10.36982/jseci.v1i1.3047

Muit Sunjaya, Zulham Sitorus, Khairul, Muhammad Iqbal, & A.P.U Siahaan. (2024). Analysis of machine learning approaches to determine online shopping ratings using naïve bayes and svm. International Journal Of Computer Sciences and Mathematics Engineering, 3(1), 7–16. https://doi.org/10.61306/ijecom.v3i1.60

Pajri, D., Umaidah, Y., & Padilah, T. N. (2020). K-Nearest Neighbor Berbasis Particle Swarm Optimization untuk Analisis Sentimen Terhadap Tokopedia. Jurnal Teknik Informatika Dan Sistem Informasi, 6(2), 242–253. https://doi.org/10.28932/jutisi.v6i2.2658

Pratiwi, S. H., Witanti, W., Hendro, T., Achmad, U. J., & Abstract, Y. (2024). Optimasi Penentuan Vendor Untuk Material Pesawat Menggunakan Algoritma Particle Swarm Optimization. Jurnal Ilmiah Wahana Pendidikan, Februari, 2024(4), 825–837. https://doi.org/10.5281/zenodo.10537168

Syahputra, H. (2021). Sentiment Analysis of Community Opinion on Online Store in Indonesia on Twitter using Support Vector Machine Algorithm (SVM). Journal of Physics: Conference Series, 1819(1). https://doi.org/10.1088/1742-6596/1819/1/012030

Umiyati, A., Dasari, D., & Agustina, F. (2021). Peramalan Harga Batubara Acuan Menggunakan Metode PSOSVR dan IPSOSVR. Jurnal EurekaMatika, 9(1), 69–94.

Downloads

Published

2025-03-15

How to Cite

Mery Oktaviyanti Puspitaningtyas, Kartika Puspita, Yuris Alkhalifi, & Yulita Ayu Wardani. (2025). IMPLEMENTATION OF SUPPORT VECTOR MACHINE, PARTICLE SWARM OPTIMIZATION, AND NAÏVE BAYES ALGORITHMS IN SENTIMENT ANALYSIS OF PRODUCT REVIEWS: A CASE STUDY OF E-COMMERCE LAZADA. Jurnal Riset Informatika, 7(2), 30–37. https://doi.org/10.34288/jri.v7i2.362

Issue

Section

Articles