SENTIMENT ANALYSIS OF INTERNET SERVICE PROVIDERS USING NAÏVE BAYES BASED ON PARTICLE SWARM OPTIMIZATION

Authors

  • Anugrah Anugrah STT Wastukancana
  • Teguh Iman Hermanto STT Wastukancana
  • Ismi Kaniawulan STT Wastukancana
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v4i4.117

Keywords:

Sentiment Analysis, Internet Service Provider, Naïve Bayes, Particle Swarm Optimization

Abstract

Twitter is a social media application that is widely used. Where as many as 18.45 million users in Indonesia, Twitter users can send and read messages with a maximum of 280 characters displayed. Many opinions and reviews uploaded by users via tweets on social media are experienced in everyday life. Lately, comments about internet service providers in the covid-19 pandemic have been widely reviewed by Twitter users. Problems about internet providers through words often uploaded include internet provider complaints related to network quality, package prices, user satisfaction, and others. This study aims to classify Twitter users' tweets against internet service providers in Indonesia by analyzing the sentiments of 3 internet service providers, namely with the keywords Biznet, first media, and Indihome, using the Naïve Bayes algorithm and optimization with Particle Swarm Optimization. This research is also helpful in helping to become a measure where prospective new users will see the quality of an internet service provider in Indonesia through tweets and then divide the opinion into positive and negative. The results of Biznet's research using Naïve Bayes produce an accuracy of 77.94%, and after optimization, it becomes 81.62%. First media using Naïve Bayes produces 91.39% accuracy, and after optimization, it becomes 92.88%. Indihome using Naïve Bayes produces an accuracy of 85.78%, and after optimization, it becomes 87.48%. It can be concluded that the Naïve Bayes algorithm is a good algorithm for classification, and optimization using Particle Swarm Optimization has an effect on increasing accuracy results.

Downloads

Download data is not yet available.

References

Andika, L. A., Azizah, P. A. N., & Respatiwulan, R. (2019). Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier. Indonesian Journal of Applied Statistics, 2(1), 34–41. https://doi.org/10.13057/ijas.v2i1.29998

APJII. (2019). Survei. Diambil kembali dari Asosiasi Penyelenggara Jasa Internet Indonesia. In apjii.or.id. https://apjii.or.id/survei2019x

Aulianita, R., & Rifai, A. (2018). Optimasi Particle Swarm Optimization Pada Naive Bayes Untuk Sentiment Analysis Furniture. Information Management for Educators and Professionals, 3(1), 31–40.

Bustami, 2012, Teknik, D. I., & Bayes, N. (2013). “Penerapan Algoritma Naive Bayes Untuk Mengklasifikasi Data Nasabah.” TECHSI-Jurnal Teknik Informatika, 146(Klasifikasi), 128–146.

Christianto, H. (2020). Penggunaan Media Internet dalam Pemenuhan Hak atas Pendidikan di Masa Pandemi Covid-19: Perspektif Hak Asasi Manusia dan Hukum Pidana. Jurnal Ham, 11(2), 239-253. http://repository.ubaya.ac.id/38038/

ER, Y., & Solecha, K. (2021). Implementasi Particle Swarm Optimization (PSO) pada Analysis Sentiment Review Aplikasi Trafi menggunakan Algoritma Naive Bayes (NB). 7(1), 25–29. https://doi.org/10.31294/jtk.v4i2

Fikri, M. I., Sabrila, T. S., & Azhar, Y. (2020). Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter. Smatika Jurnal, 10(02), 71–76. https://doi.org/10.32664/smatika.v10i02.455

Hanifah, A. (2020). Pembangunan Business Intelligence Pada Toserba Koperasi Karyawan Semen Padang (KKSP) Berbasis Dashboard System [Universitas Andalas]. http://scholar.unand.ac.id/56876/

Harjanta, A. T. J. (2015). Preprocessing Text untuk Meminimalisir Kata yang Tidak Berarti dalam Proses Text Mining. Informatika UPGRIS, 1(1), 1–9. http://journal.upgris.ac.id/index.php/JIU/article/view/804

Haupt, R. L., & Haupt, S. E. (2004). Practical Genetic Algorithms (2nd ed.). John Wiley & Sons.

Hayuningtyas, R. Y., & Sari, R. (2019). Analisis Sentimen Opini Publik Bahasa Indonesia Terhadap Wisata TMII Menggunakan Naïve Bayes dan PSO. Jurnal Techno Nusa Mandiri, 16(1), 37–42. https://doi.org/10.33480/techno.v16i1.115

Ipmawati, J., Kusrini, & Taufiq Luthfi, E. (2017). Komparasi Teknik Klasifikasi Teks Mining Pada Analisis Sentimen. Indonesian Journal on Networking and Security, 6(1), 28–36. http://www.ijns.org/journal/index.php/ijns/article/view/1444

Khairina, P. R., & Fitriati, D. (2021). Sentiment Analysis of Twitter Data on Remote Learning Using Naïve Bayes Algorithm. Jurnal Riset Informatika, 3(3), 203–210. https://doi.org/10.34288/jri.v3i3.187

Muttaqien, F. (2016). Implementasi Text Mining Pada Aplikasi Pengawasan Penggunaan Internet Anak. 53(9), 8–24.

Ramadhan, D. A., & Setiawan, E. B. (2019). Analisis Sentimen Program Acara di SCTV Pada Twitter Menggunakan Metode Naive Bayes Dan Support Vector Machine. Seminar Nasional Teknologi Fakultas Teknik Universitas Krisnadwipayana, 6(2), 9736–9743. https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/10708

Rustiana, D., & Rahayu, N. (2017). Analisis Sentimen Pasar Otomotif Mobil: Tweet Twitter Menggunakan Naïve Bayes. Simetris: Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 8(1), 113–120. https://doi.org/10.24176/simet.v8i1.841

Sudiantoro, A. V., Zuliarso, E., Studi, P., Informatika, T., Informasi, F. T., Stikubank, U., & Mining, T. (2018). Analisis Sentimen Twitter Menggunakan Text Mining Dengan Algoritma Naive Bayes Classifier. Dinamika Informatika, 10(2), 398–401.

Downloads

Published

2022-09-24

How to Cite

Anugrah, A., Hermanto, T. I., & Kaniawulan, I. (2022). SENTIMENT ANALYSIS OF INTERNET SERVICE PROVIDERS USING NAÏVE BAYES BASED ON PARTICLE SWARM OPTIMIZATION. Jurnal Riset Informatika, 4(4), 371–378. https://doi.org/10.34288/jri.v4i4.117