EMPLOYEE TURNOVER CLASSIFICATION USING PSO-BASED NAÏVE BAYES AND NAÏVE BAYES ALGORITHM IN PT. MASTERSYSTEM INFOTAMA
DOI:
https://doi.org/10.34288/jri.v3i3.83Keywords:
Algoritma Naïve Bayes, Particle Swarm Optimization, TurnoverAbstract
Turnover occurs because many employees leave and new employees enter, so the turnover in and out of employees is quite high, therefore turnover can be controlled with a strategy to increase employee engagement. PT. Mastersystem Infotama is a System Integrator company or better known as a fairly large IT company with a total of approximately 600 employees. Turnover is high enough to make some divisions lack human resources, and the human capital management division is quite difficult to recruit employees to find candidates with various criteria that must be available in a short time. Competition in the IT world is quite tight both within companies and employees with good experience and abilities. Especially the sales department that holds a database of potential customers, and the engineer section that already has a certificate of expertise that is widely used in the IT business world. Therefore, it is necessary to classify what factors make employee turnover high by using the Naïve Bayes and Naïve Bayes algorithms based on Particle Swarm Optimization, so that they can be used as material for internal evaluation to increase employee engagement. The results of this study, classification using the Naïve Bayes algorithm, has an accuracy of 79.17%, while the classification using the Naïve Bayes algorithm based on Particle Swarm Optimization is 94.17%.
Downloads
References
Ariani, F., Amir, Alam, N., & Rizal, K. (2018). Klasifikasi Penetapan Status Karyawan Dengan Menggunakan Metode Naive Bayes. Jurnal Paradigma, XX(2), 33–38. https://doi.org/10.31294/p.v
Asistyasari, A. N. Y. (2019). Komparasi Analisis Penerimaan Karyawan Menggunakan. November, 519–525. https://doi.org/10.30998/simponi.v0i0.519
Asra, T. (2019). Komparasi Algoritma C4.5, K-NN Dan Naïve Bayes Dalam Penerimaan Karyawan Menggunakan PSO Pada PT. XYZ. Indonesian Journal on Software Engineering (IJSE), 5(2), 71–79. https://doi.org/10.31294/ijse.v5i2.6959
Bayu Ferdiansyah, L. goeirmanto. (2020). Prediksi Loyalitas dalam Keterikatan Karyawan terhadap Perusahaan Menggunakan Algoritma. Jurnal Sistem Dan Teknologi Informasi, 8(1), 87–97.
Chandra Naya, M. (2019). Analisa Algoritma Naïve Bayes Untuk Klasifikasi Karyawan Teladan Pada PT. Toyoseal Indonesia. SIGMA - Jurnal Teknologi Pelita Bangsa, 10(2407–3903), 39–45.
Herry Derajad, W (2020). Implementasi Data Mining Dengan Algoritma Naïve Bayes Pada Penjualan Obat. Jurnal Informatika, Vol 7 No 1 April, 1-7.
Ikhsan Romli, A. T. Z. (2020). Penentuan Jadwal Overtime Dengan Klasifikasi Data Karyawan Menggunakan Algoritma C4.5. Jurnal Sains Komputer & Informatika (J-SAKTI), 4(September), 694–702.
Larose, D. T. (2014). Discovering Knowledge in Data : An Introduction to Data Mining. (I. New Jersey: John Wiley & Sons (ed.)).
Marudut, V., Siregar, M., Komputer, T., Indonesia, P. B., Utara, S., Cafe, E. S., Cafe, S., & Cafe, E. S. (2018). Sistem Pendukung Keputusan Penentuan Insentif Bulanan Pegawai Dengan Menggunakan Metode Naïve Bayes. 7, 87–94.
Noviyanto, A. S. (2018). Prekdiksi Turnover Karyawan Menggunakan Metode Klasifikasi Naive Bayes. V.
Prawitasari, A. (2016). Faktor-Faktor Yang Mempengaruhi Turnover Intention Karyawan Pada Pt. Mandiri Tunas Finance Bengkulu. EKOMBIS REVIEW: Jurnal Ilmiah Ekonomi Dan Bisnis, 4(2), 177–186. https://doi.org/10.37676/ekombis.v4i2.283
Rino Gupitha. (2018). Penerapan Klasifikasi Status Pegawai Menggunakan Metode Naïve Bayes Kajian Teori Penelitian Terkait. Jurnal Global, V(1), 28–38.
RYFA. (2020). Teknik Pengumpulan Data Kualitatif dan Kuantitatif dalam Metode Penelitian. https://kumparan.com/berita-update/teknik-pengumpulan-data-kualitatif-dan-kuantitatif-dalam-metode-penelitian-1ukfvn1FWGs/full
Sahputra, D. A., & Saelan, M. R. R. (2020). Penentuan Faktor Kelayakan Penerimaan Karyawan Menggunakan Algoritma Decission Tree pada Perusahaan PT . Personel Alih Daya. Jurnal Sains Dan Informatika, 6(November), 148–156. https://doi.org/10.34128/jsi.v6i2.225
Saleh, A. (2015). Implementasi Metode Klasifikasi Naïve Bayes Dalam Memprediksi Besarnya Penggunaan Listrik Rumah Tangga. Creative Information Technology Journal, 2(3), 207–217.
Sembiring, I. (2018). Pengambilan keputusan pegawai tidak tetap menjadi pegawai tetap dengan decission tree. Journal Of Informatics Education, 1, 26–37.
Sugiyono. (2013). Metode Penelitian Kuantitatif, Kualitatif dan R&D.
Sunarti. (2019). Prediksi Promosi Jabatan Karyawan Dengan Algoritma C4 . 5 ( Studi Kasus : Apartemen Senayan Jakarta ). Techno.Com, 18(4), 288–298.
Triuli Novianti, I. S. (2016). Penentuan Jadwal Kerja Berdasarkan Klasifikasi Data Karyawan Menggunakan Metode Decision Tree C4 . 5 ( Studi Kasus Universitas Muhammadiyah Surabaya). Jurnal Komunikasi, Media Dan Informatika, 5(1).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Endang Sri Palupi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.