PREDICTION OF ANDROID HANDPHONE SALES DURING PANDEMIC USING NAÏVE BAYES AND K-NN METHODS BASED ON PARTICLE SWARM OPTIMIZATION
DOI:
https://doi.org/10.34288/jri.v4i1.133Keywords:
Android, K-Nearest Neighbor, Naïve BayesAbstract
Abstract
During the pandemic, most schools, campuses, and places of education conducted online teaching and learning activities. Many teaching and learning activities are carried out using the Zoom, Google, WebEx, or Microsoft Teams applications. All of that can be done through a laptop, you can also use a cellphone (HP) so that the need for laptops and cellphones increases, both new and used goods. Even though during the pandemic the economic situation was declining, many companies suffered losses, resulting in a reduction in employees and causing a high unemployment rate, the need for Android phones remains high. In addition to online distance learning facilities, Android phones can also be used for online sales through e-commerce, market places, social media, and other digital ceilings. Currently, Android phones have many choices and according to the funds we have, with various brands and specifications. Many brands issue android cellphone products with pretty good specifications and affordable prices, so that even though purchasing power has decreased due to the pandemic, sales of android cellphones are still high. In this study, the author predicts the highest sales of android cellphones using the Naïve Bayes method and the K-Nearest Neighbor method based on Particle Swarm Optimization. accuracy of 81.33%.
Downloads
References
Alfian Faiz Izzulhaq1, S. (2020). Klasifikasi Penjualan Aplikasi Android. Proceeding SENDIU, (2019), 978–979.
Arikunto, S. (2006). Suatu Pendekatan Praktik (Revisi VI). Jakarta: PT Rineka Cipta.
Asmaul Husnah Nasrullah. (2021). Implementasi Algoritma Decision Tree Untuk Klasifikasi Produk Laris. Jurnal Ilmiah Ilmu Komputer, 7(2), 45–51.
Cynthia, E. P., & Ismanto, E. (2018). Metode Decision Tree Algoritma C.45 Dalam Mengklasifikasi Data Penjualan. Jurnal Riset Sistem Informasi Dan Teknik Informatika (JURASI), (3) Juli(July), 1–13.
Eska, J. (2016). Penerapan Data Mining Untuk Prediksi Penjualan Wallpaper Menggunakan Algoritma C4.5. 2. https://doi.org/10.31227/osf.io/x6svc
Faradillah, S. (2013). Implementasi Data Mining Untuk Pengenalan Karakteristik Transaksi Customer Dengan Menggunakan Algoritma C4. 5. Pelita Informatika Budi Darma, 5(3), 1–5.
Kusumah, W. D. D. (2011). Penelitian Tindakan Kelas. Jakarta: PT Indeks.
Solihin, S. R. (2017). 10 Tips Panduan Memilih & Membeli HP Android Berkualitas. Retrieved from Septian website: https://www.septian.web.id/10-tips-panduan-memilih-membeli-hp-android-bagus-berkualitas-html/
Sugiyono. (2016). Metode Penelitian Kuantitatif, Kualitatif dan R&D. Bandung: Alfabeta.
Sunge, A., & Fidiawan, H. (2019). Prediksi Produk Laris Mobil Honda Dengan Metode Klasifikasi Menggunakan Algoritma C4. 5 (Studi Kasus: Data Penjualan Sales PT Prospect Motor, Cikarang). Jurnal SIGMA, 9(4), 97–103. Retrieved from https://jurnal.pelitabangsa.ac.id/index.php/sigma/article/view/461
Wibowo, D. A. (2018). Prediksi Penjualan Obat Herbal Hp Pro Menggunakan Algoritma Neural Network. Technologia: Jurnal Ilmiah, 9(1), 33–41. https://doi.org/10.31602/tji.v9i1.1100
Yatim Riyanto. (2010). Metodologi Penelitian Pendidikan. Surabaya: SIC.
Zakir, A., Ndruru, Y., & Hadinata, E. (2020). Penerapan Data Mining Untuk Klasifikasi Data Penjualan Makanan Terlaris Dengan Algoritma C45. Jurnal Ilmiah Teknologi Informasi Dan Robotika, 2(2), 7–12. Retrieved from http://jifti.upnjatim.ac.id/index.php/jifti/article/view/33
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Endang Sri Palupi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.










