Measuring the Level of Readiness in SDI Al-Hasaniah Students for Computer-Based Exams Using Technology Readiness Index Method

Authors

  • Anggi Oktaviani Universitas Nusa Mandiri https://orcid.org/0000-0002-3879-3523
  • Deny Novianti Universitas Bina Sarna Informatika
  • Dahlia Sarkawi Universitas Bina Sarna Informatika
  • Muhamad Zul Fahmi
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v5i4.127

Abstract

The context of this research is that erratic rainfall can disrupt community activities, especially for traders who want to make sales. In addition, information about rainfall is also needed by farmers in determining planting patterns to get maximum yields. The purpose of this research is to be able to help farmers predict rainfall to get maximum crop yields. One method to be able to predict rainfall is Fuzzy Logic. This research will use the Tsukamoto Fuzzy method. In the research conducted this time, the author conducted monthly rainfall forecasting in Sleman Regency. Rainfall data in Sleman Regency from 2015 to 2022 will be used in this research. This research succeeded in getting a MAPE value of 49.31%. The result of this research is the highest monthly rainfall prediction in November, with a rainfall of 713.78 mm. At the same time, the lowest occurred in August, which amounted to 36.47 mm. This research only gets a MAPE value of 49.31%. So, it can be concluded that the Tsukamoto fuzzy method cannot predict rainfall well.

Downloads

Download data is not yet available.

References

Adib Azka, M., Aditya Sugianto, P., Kurniawan Silitonga, A., & Redha Nugraheni, I. (2018). Uji Akurasi Produk Estimasi Curah Hujan Satelit Gpm Imerg di Surabaya, Indonesia. Jurnal Sains & Teknologi Modifikasi Cuaca, 19(2), 83–88. doi:https://doi.org/10.29122/jstmc.v19i2.3153

Chan, R. M., Fitriyah, H., & Widasari, E. R. (2023). Pengendalian Suhu dan Kelembapan Udara untuk Budidaya Microgreen Lobak menggunakan Metode Regresi Linier berbasis Arduino. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 7(5), 2534–2541. Retrieved from http://j-ptiik.ub.ac.id

Mahendra Putra, R., & Anjar Rani, N. (2020). Prediksi Curah Hujan Harian di Stasiun Meteorologi Kemayoran Menggunakan Artificial Neural Network (ANN). Buletin GAW Bariri (BGB), 1(2), 101–108. doi:https://doi.org/10.31172/bgb.v1i2.35

Muhandhis, I., Ritonga, A. S., & Murdani, M. H. (2021). Implementasi Metode Inferensi Fuzzy Tsukamoto Untuk Memprediksi Curah Hujan Dasarian di Sumenep. Jurnal Ilmiah Edutic : Pendidikan Dan Informatika, 8(1), 1–10. Retrieved from http://eprints.uwp.ac.id/id/eprint/3516

Rindengan, A. J., & Langi, Y. A. R. (2019). Sistem Fuzzy 2019. Bandung: CV. Patra Media Grafindo.

Rullah, S. F. R., & Prebianto, N. F. (2020). Lampu Cerdas Multimode Menggunakan Arduino dengan Kontrol Fuzzy Berbasis Android. Journal of Applied Electrical Engineering, 4(1), 10–15. doi:https://doi.org/10.30871/jaee.v4i1.2093

Setiawan, A., Yanto, B., & Yasdomi, K. (2018). Logika Fuzzy dengan Matlab (Contoh Kasus Penelitian Penyakit Bayi dengan Fuzzy Tsukamoto). Jayapangus Press Book. Retrieved from http://book.penerbit.org/index.php/JPB/article/view/122

Shaum, A., Yuniar Chairunisa, D., Novianty, I., Wijanarko, K., Auzan Anshar, M., & Cahyadi, R. (2023). Implementasi Metode Fuzzy Mamdani dalam Keputusan Intensitas Cahaya Ruangan Penelitian Benih Tumbuhan. Journal of Vocational Education and Information Technology, 4(1), 1–5. doi:https://doi.org/10.56667/jveit.v4i1.953

Sholihah, U. (2022). Penerapan Logika Fuzzy Tsukamoto untuk Memprediksi Curah Hujan di Kabupaten Kotawaringin Timur. EJECTS : E-Journal Computer, Technology and Informations System, 1(2), 78–86. Retrieved from http://jurnal.unda.ac.id/index.php/ejects/article/view/256

Suhartanto, M., Nuryana, I. K. D., & Mujianto, A. H. (2021). Perancangan Sistem Informasi Prediksi Curah Hujan pada Kabupaten Jombang Menggunakan Metode Fuzzy Time Series. Inovate: Jurnal Ilmiah Inovasi Teknologi Informasi, 6(1), 55–63. Retrieved from https://ejournal.unhasy.ac.id/index.php/inovate/article/view/3167

Sunardi, S., Yudhana, A., & Muflih, G. Z. (2020). Sistem Prediksi Curah Hujan Bulanan Menggunakan Jaringan Saraf Tiruan Backpropagation. JSINBIS (Jurnal Sistem Informasi Bisnis), 10(2), 155–162. doi:https://doi.org/10.21456/vol10iss2pp155-162

Surbakti, A. B., Rahayu, S. P., Pa, S. M. B., & Ginting, R. B. (2020). Sistem Aplikasi Logika Fuzzy Untuk Penentuan Optimasi Ragi Tempe pada Proses Fermentasi Tempe Kedelai Menggunakan Metode Fuzzy Mamdani (Studi Kasus: Pengrajin Tempe Kedelai Desa Bulu Cina). Jurnal Ilmiah Simantek, 4(2), 146–160. Retrieved from https://www.simantek.sciencemakarioz.org/index.php/JIK/article/download/154/130

Wahyuni, I., & Ahda, F. (2018). Pemodelan Fuzzy Inference System Tsukamoto Untuk Prediksi Curah Hujan Studi Kasus Kota Batu. Jurnal Ilmiah Teknologi Informasi Asia, 12(2), 115–124. doi:https://doi.org/10.32815/jitika.v12i2.260

Wele, I. H., Rumlaklak, N. D., & Boru, M. (2020). Sistem Peramalan Cuaca dengan Fuzzy Mamdani (Studi Kasus: BMKG Lasiana). Jurnal Komputer Dan Informatika, 8(2), 163–169. doi:10.35508/jicon.v8i2.2883

Winarno, G. D., Harianto, S. P., & Santoso Trio. (2019). Klimatologi Pertanian. Bandarlampung: Pusaka Media.

Downloads

Published

2023-09-25

How to Cite

Oktaviani, A., Novianti, D., Sarkawi, D., & Zul Fahmi , M. (2023). Measuring the Level of Readiness in SDI Al-Hasaniah Students for Computer-Based Exams Using Technology Readiness Index Method. Jurnal Riset Informatika, 5(4), 521–528. https://doi.org/10.34288/jri.v5i4.127

Most read articles by the same author(s)