SENTIMENT ANALYSIS OF TWITTER DATA ON DISTANCE LEARNING USING NAÏVE BAYES ALGORITHM

Authors

  • Putri Rana Khairina Universitas Pancasila Jakarta
  • Desti Fitriati Universitas Pancasila Jakarta
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v3i3.68

Keywords:

Covid-19, Distance Learning System (DLS), Naïve Bayes, Sentiment Analysis, k-Fold Cross Validation

Abstract

Covid-19 is widespread, resulting in a global pandemic. Distance Learning System (DLS) is considered as a solution but, the reality of the implementation of DLS is not in accordance with the expectations of the community. Many twitter users wrote their opinions on DLS. The tendency of public sentiment can be used as a way to improve the existing education system in Indonesia and can be an input for the government in improving the DLS method that is being implemented. Thus, this study produced a system that can analyze tweet sentiment towards DLS. The tweet was obtained using the Twitter API. The method used is Naïve Bayes for the process of classification of positive, negative and neutral sentiments using 600 data. Then, data sharing is done 80% data training and 20% data testing that will be in the text preprocessing first. The accuracy of sentiment analysis of DLS using Naïve Bayes method using 3-fold Cross Validation produces an average of 93%.

 

Downloads

Download data is not yet available.

References

Ahmad, I. F. (2020). Asesmen Alternatif Dalam Pembelajaran Jarak Jauh Pada Masa Darurat Penyebaran Coronavirus Disease (Covid-19) Di Indonesia. PEDAGOGIK: Jurnal Pendidikan, 7(1), 195–222. https://doi.org/10.33650/pjp.v7i1.1136

CAKTI INDRA GUNAWAN, S. E. M. M., & YULITA, S. E. M. A. P. (2020). ANOMALI COVID-19 : DAMPAK POSITIF VIRUS CORONA UNTUK DUNIA. IRDH Book Publisher. https://books.google.co.id/books?id=CWzuDwAAQBAJ

Dahri, D., Agus, F., & Khairina, D. M. (2016). Metode Naive Bayes Untuk Penentuan Penerima Beasiswa Bidikmisi Universitas Mulawarman. Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer, 11(2), 29. https://doi.org/10.30872/jim.v11i2.211

Devita, R. N., Herwanto, H. W., & Wibawa, A. P. (2018). Perbandingan Kinerja Metode Naive Bayes dan K-Nearest Neighbor untuk Klasifikasi Artikel Berbahasa indonesia. Jurnal Teknologi Informasi Dan Ilmu Komputer, 5(4), 427.https://doi.org/10.25126/jtiik.201854773

Maryam, E. W. (2018). Gambaran Sense Of Community Pada Karyawan Bagian Administrasi Di Universitas Muhammadiyah Sidoarjo. Psikologia : Jurnal Psikologi, 2(1), 52.https://doi.org/10.21070/psikologia.v2i1.756

Praningki, T., & Budi, I. (2018). Sistem Prediksi Penyakit Kanker Serviks Menggunakan CART, Naive Bayes, dan k-NN. Creative Information Technology Journal, 4(2), 83. https://doi.org/10.24076/citec.2017v4i2.100

Putra, M. P. R., & Wardani, K. R. N. (2020). Penerapan Text Mining Dalam Menganalisis Kepribadian Pengguna Media Sosial. JUTIM (Jurnal Teknik Informatika Musirawas), 5(1), 63–71. https://doi.org/10.32767/jutim.v5i1.791

Rifqo, M. H., & Wijaya, A. (2017). Implementasi Algoritma Naive Bayes Dalam Penentuan Pemberian Kredit. Pseudocode, 4(2), 120–128. https://doi.org/10.33369/pseudocode.4.2.120-128

Risnantoyo, R., Nugroho, A., & Mandara, K. (2020). Sentiment Analysis on Corona Virus Pandemic Using Machine Learning Algorithm. Journal of Informatics and Telecommunication Engineering, 4(1), 86–96. https://doi.org/10.31289/jite.v4i1.3798

Rosyad, N. N. (2019). Analisis Sentimen Publik Terhadap Sistem Zonasi Sekolah Menggunakan Data Twitter Dengan Metode Naïve Bayes Classification. 12(4), 315–322. https://doi.org/10.30998/faktorexacta.v12i4.5205

Ruhyana, N. (2019). Analisis Sentimen Terhadap Penerapan Sistem Plat Nomor Ganjil / Genap Pada Twitter Dengan Metode Klasifikasi Naive Bayes. Jurnal IKRA-ITH Informatika, 3(1), 94–99.

Rustiana, D., & Rahayu, N. (2017). Analisis sentimen pasar otomotif mobil: Jurnal SIMETRIS, 8(1), 113–120.

Salam, M. A. K. (2020). Perilaku Produksi di Tengah Krisis Global Akibat Pandemi Covid-19 dan Memanfaatkan Media Online Facebook Sebagai Alternatif Pasar. Ekonomi, Manajemen Dan Akuntansi ISSN: 1979-9888, 1–21. http://eprints.umsida.ac.id/id/eprint/6834

Siagian, T. H. (2020). Mencari Kelompok Beresiko Tinggi Terinfeksi Virus Corona Dengan Discourse Network Analysis. Jurnal Kebijakan Kesehatan Indonesia, 09(02), 98.

Sulaiman, O. K. (2020). Merdeka Kreatif di Era Pandemi Covid-19 (Issue August).

Downloads

Published

2021-06-30

How to Cite

Khairina , P. R., & Fitriati, D. (2021). SENTIMENT ANALYSIS OF TWITTER DATA ON DISTANCE LEARNING USING NAÏVE BAYES ALGORITHM. Jurnal Riset Informatika, 3(3), 203–210. https://doi.org/10.34288/jri.v3i3.68

Most read articles by the same author(s)