SALES LEVEL ANALYSIS USING THE ASSOCIATION METHOD WITH THE APRIORI ALGORITHM

Authors

  • Samuel Samuel Sekolah Tinggi Manajemen dan Ilmu Komputer Widuri
  • Asrul Sani Sekolah Tinggi Manajemen dan Ilmu Komputer Widuri
  • Agus Budiyantara Sekolah Tinggi Manajemen dan Ilmu Komputer Widuri
  • Merliani Ivone S STISIP Widuri
  • Frieyadie Frieyadie Universitas Nusa Mandiri
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v4i4.194

Keywords:

Association Method, Apriori Algorithm, Association Rules

Abstract

The company does not yet know the pattern of consumer purchases because, so far, the sales transaction data has not been used correctly and does not have a unique method to determine consumer buying patterns. The problems on the company, this research was done to reprocess sales transaction data for 2018-2019 using data mining techniques with association methods and apriori algorithms. RapidMiner is a supporting application to find association rules derived from transaction data. Processed transaction data using the Knowledge Discovery in Database approach. Thus, the company can determine consumer habits in buying goods from sales transaction data for 2018-2019. The results of this study are that in 2018, nine association rules were obtained, of which the best were CT G-246 ⇒ CT G-250 and CT G-250 ⇒ CT G-246. In 2019, nineteen association rules were received, of which the best were PN 0441, SK 0175 ⇒ SK 0530, and SK 0175, SK 0283, ⇒ SK 0530. From the best association rules, the goods in the Coat (imported), Pants, and Skirt categories are often bought together.

Downloads

Download data is not yet available.

References

Amrin Amrin. (2017). Data Mining Dengan Algoritma Apriori untuk Penentuan Aturan Asosiasi Pola Pembelian Pupuk. Paradigma, XIX(1), 74–79. https://doi.org/https://doi.org/10.31294/p.v19i1.1836

Anggraeni, Hapsari Dita, Saputra, Ragisl, Noranita, B. (2013). Aplikasi Data Mining Analisis Data Transaksi Penjualan Obat Menggunakan Algoritma Apriori. Mining of Massive Datasets, 2(January 2013), 5–20. Retrieved from https://www.cambridge.org/core/product/identifier/CBO9781139058452A007/type/book_part

Budiyasari, V. N., Studi, P., Informatika, T., Teknik, F., Nusantara, U., & Kediri, P. (2017). Implementasi Data Mining Pada Penjualan kacamata Dengan Menggunakan Algoritma Apriori. Indonesian Journal on Computer and Information Technology, 2(2), 31–39.

Fitrina, N., Kustanto, K., & Vulandari, R. T. (2018). Penerapan Algoritma Apriori Pada Sistem Rekomendasi Barang Di Minimarket Batox. Jurnal Teknologi Informasi Dan Komunikasi (TIKomSiN), 6(2), 21–27. https://doi.org/10.30646/tikomsin.v6i2.376

Lestari, A. F., & Hafiz, M. (2020). Penerapan Algoritma Apriori Pada Data Penjualan Barbar Warehouse. INOVTEK Polbeng - Seri Informatika, 5(1), 96. https://doi.org/10.35314/isi.v5i1.1317

Oktaviani, A., TM Napitupul, G., Sarkawi, D., & Yulianti, I. (2019). Penerapan Data Mining Terhadap Penjualan Pipa Pada Cv. Gaskindo Sentosa Menggunakan Metode Algoritma Apriori. Jurnal Riset Informatika, 1(4), 167–172. https://doi.org/10.34288/jri.v1i4.96

Putra, J. L., Raharjo, M., Sandi, T. A. A., Ridwan, R., & Prasetyo, R. (2019). Implementasi Algoritma Apriori Terhadap Data Penjualan Pada Perusahaan Retail. Jurnal Pilar Nusa Mandiri, 15(1), 85–90. https://doi.org/10.33480/pilar.v15i1.113

Qoniah, I., & Priandika, A. T. (2020). Analisis Market Basket Untuk Menentukan Asossiasi Rule Dengan Algoritma Apriori (Studi Kasus: Tb. Menara). Jurnal Teknologi Dan Sistem Informasi, 1(2), 26–33.

Sani, A. (2016). Analisa Penjualan Retail dengan Metode Association Rule untuk Pengambilan Keputusan Strategis Perusahaan: Studi Kasus PT. XYZ. Infotech, (September). Retrieved from https://www.researchgate.net/profile/Asrul-Sani/publication/327680554_Analisa_Penjualan_Retail_Dengan_Metode_Association_Rule_Untuk_Pengambilan_Keputusan_Strategis_Perusahaan_Studi_Kasus_Pt_Xyz/links/5b9e8660299bf13e60373b02/ANALISA-PENJUALAN-RETAIL-DENGA

Sikumbang, E. D. (2018). Penerapan Data Mining Penjualan Sepatu Menggunakan Metode Algoritma Apriori. Jurnal Teknik Komputer AMIK BSI (JTK), Vol 4, No.(September), 1–4.

Silvanie, A. (2020). Pencarian Frequent Itemset dengan Algoritma Apriori dan Python. Studi kasus: Data Transaksi Penjualan Eceran Online di UK. Jurnal Nasional Informatikan, 1(2), 103–113.

Sugiyono. (2015). Metode Penelitian Kuantitatif, Kualitatif dan R & D. Alfabeta, Bandung.

Takdirillah, R. (2020). Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Sebagai Pendukung Informasi Strategi Penjualan. Edumatic : Jurnal Pendidikan Informatika, 4(1), 37–46. https://doi.org/10.29408/edumatic.v4i1.2081

Tana, M. P., Marisa, F., & Wijaya, I. D. (2018). Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Pada Toko Oase Menggunakan Algoritma Apriori. J I M P - Jurnal Informatika Merdeka Pasuruan, 3(2), 17–22. https://doi.org/10.37438/jimp.v3i2.167

Wardani, F. A. K., & Kristiana, T. (2020). Implementasi Data Mining Penjualan Produk Kosmetik Pada PT. Natural Nusantara Menggunakan Algoritma Apriori. Paradigma - Jurnal Komputer Dan Informatika, 22(1), 85–90. https://doi.org/10.31294/p.v22i1.6520

Wulandari, D. A. N., & Ningsih, L. (2017). Data Mining Market Basket Analysis Menggunakan Algoritma Apriori Untuk Menentukan Persediaan Obat. Konferensi Nasional Imu Sosial & Teknologi (KNiST), 1(1), 227–235.

Downloads

Published

2022-09-24

How to Cite

Samuel, S., Sani, A., Budiyantara, A., Ivone S, M., & Frieyadie, F. (2022). SALES LEVEL ANALYSIS USING THE ASSOCIATION METHOD WITH THE APRIORI ALGORITHM. Jurnal Riset Informatika, 4(4), 331–340. https://doi.org/10.34288/jri.v4i4.194

Most read articles by the same author(s)

1 2 > >>