COMPARATIVE STUDY OF FUZZY C-MEANS AND K-MEANS ALGORITHM FOR GROUPING CUSTOMER POTENTIAL IN BRAND LIMBACK
DOI:
https://doi.org/10.34288/jri.v3i4.98Keywords:
Clustering, Customer Segmentation, RFM, Fuzzy C-Means, K-MeansAbstract
The customer is a stakeholder for a business, to maintain and increase customer enthusiasm and develop it for the company's performance, it is necessary to do customer segmentation which aims to find out potential customers. This study uses purchase transaction data from Brand Limback customers in the period 2020. The use of RFM (Recency, Frecuency, Monetary) analysis helps in determining the attributes used for customer segmentation. To determine the optimal number of clusters from the RFM dataset, the Elbow method is applied. The datasets generated from RFM are grouped using the Fuzzy C-Means and K-Means algorithms, the two algorithms will compare the quality in the formation of clusters using the Silhoutte Coefficient and Davies-Bouldin Index methods. Customer segmentation from the RFM dataset that has been clustered produces 7 optimal clusters, namely Cluster 0 is a bronze customer. Cluster 1 is a silver customer. Cluster 2 is a gold customer. Cluster 3 is a platinum customer. Cluster 4 is a diamond customer. Cluster 5 is a super customer, and cluster 6 is a superstar customer. The cluster validation of k-means using the silhouette coefficient produces a value of 0.934 while the Davies bouldin index produces a value of 0.155 and the validation results of the fuzzy c-means algorithm using the silhouette coefficient produces a value of 0.921 while the Davies bouldin index produces a value of 0.145.
Downloads
References
A. Luthfi, N. Anggraini, A. S. (2020). Statistik E-Commerce 2020 (E. S. L. Anggraini, S. Utoyo, ed.). ©Badan Pusat Statistik/BPS-Statistics Indonesia.
Adiana, B. E., Soesanti, I., & Permanasari, A. E. (2018). Analisis Segmentasi Pelanggan Menggunakan Kombinasi Rfm Model Dan Teknik Clustering. Jurnal Terapan Teknologi Informasi, 2(1), 23–32. https://doi.org/10.21460/jutei.2018.21.76
Ashari, B. S., Otniel, S. C., & Rianto. (2019). Perbandingan Kinerja K-Means Dengan DSCAN Untuk Metode Clustering Data Penjualan Online Retail. Jurnal Siliwangi, 5(2), 72–77.
Christina Deni Rumiarti, I. B. (2017). Pelanggan Pada Customer Relationship Management Di Perusahaan Ritel: Studi Kasus Pt Gramedia Asri Media. Jurnal Sistem Informasi (Journal of Information System), v(Syariah Economic, Zakat), 1–7.
Jollyta, D., Efendi, S., Zarlis, M., & Mawengkang, H. (2019). Optimasi Cluster Pada Data Stunting: Teknik Evaluasi Cluster Sum of Square Error dan Davies Bouldin Index. Prosiding Seminar Nasional Riset Information Science (SENARIS), 1(September), 918. https://doi.org/10.30645/senaris.v1i0.100
Kiat, A. B. H., Azhar, Y., & Rahmayanti, V. (2020). Penerapan Metode K-Means Dengan Metode Elbow Untuk Segmentasi Pelanggan Menggunakan Model RFM (Recency, Frequency, & Monetary). Jurnal Repositor, 2(7), 945–952. https://doi.org/10.22219/repositor.v2i7.973
Nahdliyah, M. A., Widiharih, T., & Prahutama, A. (2019). Metode K-Medoids Clustering dengan Validasi Silhouette Index dan C-Index. Jurnal Gaussian, 8(2), 161–170.
Nurmalasari, Mukhayaroh, A., Marlina, S., Hartini, S., Muryani, S., Sinnun, A., … Adiwihardja, C. (2020). Implementation of Clustering Algorithm Method for Customer Segmentation. Journal of Computational and Theoretical Nanoscience, 17(2), 1388–1395. https://doi.org/10.1166/jctn.2020.8815
Putra, R. R., & Wadisman, C. (2018). Implementasi Data Mining Pemilihan Pelanggan Potensial Menggunakan Algoritma K Means. INTECOMS: Journal of Information Technology and Computer Science, 1(1), 72–77. https://doi.org/10.31539/intecoms.v1i1.141
Rustiyan, R., & Mustakim, M. (2018). Penerapan Algoritma Fuzzy C Means untuk Analisis Permasalahan Simpanan Wajib Anggota Koperasi. Jurnal Teknologi Informasi Dan Ilmu Komputer, 5(2), 171. https://doi.org/10.25126/jtiik.201852605
Sadewo, M. G., Windarto, A. P., & Wanto, A. (2018). Penerapan Algoritma Clustering Dalam Mengelompokkan Banyaknya Desa/Kelurahan Menurut Upaya Antisipasi/ Mitigasi Bencana Alam Menurut Provinsi Dengan K-Means. KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 2(No.1 Oktober 2018), 311–319. https://doi.org/10.30865/komik.v2i1.943
Saifullah, S., Zarlis, M., Zakaria, Z., & Sembiring, R. W. (2017). Analisa Terhadap Perbandingan Algoritma Decision Tree Dengan Algoritma Random Tree Untuk Pre-Processing Data. J-SAKTI (Jurnal Sains Komputer Dan Informatika), 1(2), 180. https://doi.org/10.30645/j-sakti.v1i2.41
Silvi, R. (2018). Analisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia. Jurnal Matematika “MANTIK,” 4(1), 22–31. https://doi.org/10.15642/mantik.2018.4.1.22-31
Sutresno, S. A., Iriani, A., & Sediyono, E. (2018). Metode K-Means Clustering dengan Atribut RFM untuk Mempertahankan Pelanggan. Jurnal Teknik Informatika Dan Sistem Informasi, 4, 433.
Syahdan, S. Al, & Sindar, A. (2018). Data Mining Penjualan Produk Dengan Metode Apriori Pada Indomaret Galang Kota. Data Mining Penjualan Produk Dengan Metode Apriori Pada Indomaret Galang Kota, 1.
Taqwim, W. A., Setiawan, N. Y., & Bachtiar, F. A. (2019). Analisis Segmentasi Pelanggan Dengan RFM Model Pada Pt . Arthamas Citra Mandiri Menggunakan Metode Fuzzy C-Means Clustering. 3(2), 1986–1993.
Tempola, F., Muhammad, M., & Mubarak, A. (2020). Penggunaan Internet Dikalangan Siswa SD di Kota Ternate: Suatu Survey, Penerapan Algoritma Clustering dan Validasi DBI. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(6), 1153. https://doi.org/10.25126/jtiik.2020722370
Triyansyah, D., & Fitrianah, D. (2018). Analisis Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Marketing. Jurnal Telekomunikasi Dan Komputer, 8(3), 163. https://doi.org/10.22441/incomtech.v8i3.4174
Winarta, A., & Kurniawan, W. J. (2021). Optimasi Cluster K-Means Menggunakan Metode Elbow Pada Data Pengguna Narkoba Dengan Pemrograman Python. JTIK (Jurnal Teknik Informatika …, 5(1).
Wiranda, L., & Sadikin, M. (2019). Penerapan Long Short Term Memory Pada Data Time Series Untuk Memprediksi Penjualan Produk Pt. Metiska Farma. Jurnal Nasional Pendidikan Teknik Informatika, 8(3), 184–196.
Yunita, Y., Herman, S., Takwim, A., & Widianto, S. R. (2019). Independent Research Final Report: A Study Of Comparing Conceptual And Performance Of K-Means And Fuzzy C Means Algorithms (Clustering Method Of Data Mining) Of Consumer Segmentation. Bandung.
,,, ,
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Difa Lazuardi Aditya, Devi Fitrianah
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.