SENTIMENT ANALYSIS OF TWITTER DATA ON KIP-KULIAH USING TEXTBLOB AND GRADIENT BOOSTING

Authors

  • Desi Masdin
  • Nanang Ruhyana Universitas Nusa Mandiri
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v7i1.353

Keywords:

Higher education, KIP-Kuliah, Sentiment analysis, TextBlob, Gradient Boosting

Abstract

The Indonesian government aims to position the country among developed nations by 2045, with a primary focus on improving education quality from elementary to higher education levels. One of the key initiatives is the KIP-Kuliah (Indonesia Smart College Card) program, which supports high-achieving students from underprivileged economic backgrounds in accordance with UU No. 12/2012 on Higher Education. This study applies sentiment analysis using TextBlob and the Gradient Boosting algorithm to build a predictive model that identifies public support for the program through Twitter data. The results reveal a significant dominance of negative sentiment, with the model achieving an accuracy of 97%. These findings underscore the importance of sentiment analysis as a feedback tool for policymakers during the implementation of education-related programs. Furthermore, the results suggest that continuous monitoring of public opinion via social media can contribute to more adaptive and responsive policy development. This research highlights the need for future studies to expand the scope of analysis using more advanced natural language processing techniques for deeper understanding and broader coverage of public sentiment.

Downloads

Download data is not yet available.

References

Agustina, D. A., Subanti, S., & Zukhronah, E. (2021). Implementasi Text Mining Pada Analisis Sentimen Pengguna Twitter Terhadap Marketplace di Indonesia Menggunakan Algoritma Support Vector Machine. Indonesian Journal of Applied Statistics, 3(2), 109. https://doi.org/10.13057/ijas.v3i2.44337

Aidah, N. A. (2022). Analisis Kebijakan Program Beasiswa Kartu Indonesia Pintar-Kuliah (Kip-K) Di Universitas Diponegoro. Jurnal Ilmu Administrasi Dan Studi Kebijakan (JIASK), 5(1), 1–22. https://doi.org/10.48093/jiask.v5i1.91

Arfyanti, I., Fahmi, M., & Adytia, P. (2022). Penerapan Algoritma Decision Tree Untuk Penentuan Pola Penerima Beasiswa KIP Kuliah. Building of Informatics, Technology and Science (BITS), 4(3), 1196–1201. https://doi.org/10.47065/bits.v4i3.2275

Azzahrawani, N. R., Arkanudin, Alamri, A. R., Adha, N., Nuari, O. L., & Heronimus, V. (2024). Implementation of the Independent College KIP Policy at Tanjungpura University. JKMP (Jurnal Kebijakan Dan Manajemen Publik), 12(1), 58–68. https://doi.org/10.21070/jkmp.v12i1.1765

Digno, C., Jauhar, M. I., & Syaifullah, M. N. (2023). Pendekatan Deep Learning dan Gradient Boosting dalam Prediksi Harga Properti Airbnb dengan Analisis Sentimen. JELIKU (Jurnal Elektronik Ilmu Komputer Udayana), 12(1), 191. https://doi.org/10.24843/jlk.2023.v12.i01.p22

DjajaPutra, I. O., Prilianti, K. R., & Tirma Irawan, P. L. (2020). Implementasi Text Mining Untuk Analisis Opini Masyarakat Terhadap Kinerja Layanan Transportasi Online Dengan Analisis Faktor. Jurnal Simantec, 8(2), 45–53. https://doi.org/10.21107/simantec.v8i2.6764

Faadhilah, G., Gumilar, R., & Nurdianti, R. R. S. (2023). Pengaruh Lifestyle, Self Control, dan Financial Literacy terhadap Perilaku Konsumsi. Global Education Journal, 1(3), 177–190. https://doi.org/10.59525/gej.v1i3.175

Fauziyyah, A. (2020). ANALISIS SENTIMEN PANDEMI COVID19 PADA STREAMING TWITTER DENGAN TEXT MINING PYTHON. Jurnal Ilmiah SINUS, 18, 31. https://doi.org/10.30646/sinus.v18i2.491

Gagan Suganda, Marsani Asfi, Ridho Taufiq Subagio, & Ricky Perdana Kusuma. (2022). Penentuan Penerima Bantuan Beasiswa Kartu Indonesia Pintar (Kip) Kuliah Menggunakan Naïve Bayes Classifier. JSiI (Jurnal Sistem Informasi), 9(2), 193–199. https://doi.org/10.30656/jsii.v9i2.4376

Hanif, K. H., & Muntiari, N. R. (2024). Penerapan Algoritma Decision Tree, Svm, Naive Bayes Dalam Deteksi Stunting Pada Balita. METHOMIKA Jurnal Manajemen Informatika Dan Komputerisasi Akuntansi, 8(1), 105–109. https://doi.org/10.46880/jmika.vol8no1.pp105-109

Hosseini, P., Khoshsirat, S., Jalayer, M., Das, S., & Zhou, H. (2023). Application of text mining techniques to identify actual wrong-way driving (WWD) crashes in police reports. International Journal of Transportation Science and Technology, 12(4), 1038–1051. https://doi.org/10.1016/j.ijtst.2022.12.002

I Komang Dharmendra, Ricky Aurelius Nurtanto Diaz, Muhamad Samsudin, I Gusti Agung Ngurah Rai Semadi, & I Made Agus Wirahadi Putra. (2023). Text Mining Untuk Mendeteksi Emosi Pengguna Terhadap “Nusantara” Sebagai Nama Ikn. Jurnal Teknologi Informasi Dan Komputer, 9(5), 457–463. https://doi.org/10.36002/jutik.v9i5.2639

Izzhulhaq, R. R., & Trisnaningsih, S. (2022). Analisis Implementasi Kebijakan Pro Poor Budgeting pada Program Kartu Indonesia Pintar Terhadap Penerima Program Kartu Indonesia Pintar (Studi Kasus Mahasiswa S-1 Akuntansi Universitas Pembangunan Nasional “Veteran” Jawa Timur Angkatan 2021). J-MAS (Jurnal Manajemen Dan Sains), 7(2), 523. https://doi.org/10.33087/jmas.v7i2.444

Khotimah, K., Anggraini, L. W., Alfirnanda, W. T., & Tahyudin, I. (2022). Decision Support System for Selecting KIP-K Recipients at Amikom University, Purwokerto Using the TOPSIS Method. Internet of Things and Artificial Intelligence Journal, 2(4), 279–290. https://doi.org/10.31763/iota.v2i4.566

Kurniawan, I., & Susanto, A. (2019). Implementasi Metode K-Means dan Naïve Bayes Classifier untuk Analisis Sentimen Pemilihan Presiden (Pilpres) 2019. Eksplora Informatika, 9(1), 1–10. https://doi.org/10.30864/eksplora.v9i1.237

Kurniawijaya, P. A., & Karsana, I. W. W. (2023). Implementasi Metode AHP Dalam Sistem Penunjang Keputusan Penerima KIP Kuliah. JUKI : Jurnal Komputer Dan Informatika, 5(1), 22–31.

Marita, T., & Prayogi, A. (2024). Telaah Deskriptif Motivasi Berprestasi Mahasiswa Penerima Beasiswa Kartu Indonesia Pintar Kuliah (KIP-K). RUKASI: Jurnal Ilmiah Perkembangan Pendidikan Dan Pembelajaran, 1(02), 54–64. https://doi.org/10.70294/rr80jk09

Nitha Kumala Dewi. (2023). Identifikasi Berita Hoax dengan Menerapkan Algoritma Text Mining. Journal of Informatics, Electrical and Electronics Engineering, 2(3), 65–74. https://doi.org/10.47065/jieee.v2i3.888

Putri, N. A. Y., Subagio, R. T., & Asfi, M. (2021). Sistem Pendukung Keputusan Penilaian Kinerja Mahasiswa KIP Kuliah dengan Penerapan Metode TOPSIS dan PROMETHEE. Jurnal Media Informatika Budidarma, 5(4), 1394. https://doi.org/10.30865/mib.v5i4.3268

Vonega, D. A., Fadila, A., & Kurniawan, D. E. (2022). Analisis Sentimen Twitter Terhadap Opini Publik Atas Isu Pencalonan Puan Maharani dalam PILPRES 2024. Journal of Applied Informatics and Computing, 6(2), 129–135. https://doi.org/10.30871/jaic.v6i2.4300

Wijaya, N., & Panjaitan, E. S. (2024). Analisis Sentimen Ulasan Aplikasi Instagram di Google Play Store : Pendekatan Multinomial Naive Bayes dan Berbasis Leksikon. 6(2), 921–929. https://doi.org/10.47065/bits.v6i2.5615

Downloads

Published

2024-12-15

How to Cite

Desi Masdin, & Ruhyana, N. (2024). SENTIMENT ANALYSIS OF TWITTER DATA ON KIP-KULIAH USING TEXTBLOB AND GRADIENT BOOSTING. Jurnal Riset Informatika, 7(1), 31–38. https://doi.org/10.34288/jri.v7i1.353