SENTIMENT ANALYSIS OF TWITTER DATA ON KIP-KULIAH USING TEXTBLOB AND GRADIENT BOOSTING
DOI:
https://doi.org/10.34288/jri.v7i1.353Keywords:
Higher education, KIP-Kuliah, Sentiment analysis, TextBlob, Gradient BoostingAbstract
The Indonesian government aims to position the country among developed nations by 2045, with a primary focus on improving education quality from elementary to higher education levels. One of the key initiatives is the KIP-Kuliah (Indonesia Smart College Card) program, which supports high-achieving students from underprivileged economic backgrounds in accordance with UU No. 12/2012 on Higher Education. This study applies sentiment analysis using TextBlob and the Gradient Boosting algorithm to build a predictive model that identifies public support for the program through Twitter data. The results reveal a significant dominance of negative sentiment, with the model achieving an accuracy of 97%. These findings underscore the importance of sentiment analysis as a feedback tool for policymakers during the implementation of education-related programs. Furthermore, the results suggest that continuous monitoring of public opinion via social media can contribute to more adaptive and responsive policy development. This research highlights the need for future studies to expand the scope of analysis using more advanced natural language processing techniques for deeper understanding and broader coverage of public sentiment.
Downloads
References
Agustina, D. A., Subanti, S., & Zukhronah, E. (2021). Implementasi Text Mining Pada Analisis Sentimen Pengguna Twitter Terhadap Marketplace di Indonesia Menggunakan Algoritma Support Vector Machine. Indonesian Journal of Applied Statistics, 3(2), 109. https://doi.org/10.13057/ijas.v3i2.44337
Aidah, N. A. (2022). Analisis Kebijakan Program Beasiswa Kartu Indonesia Pintar-Kuliah (Kip-K) Di Universitas Diponegoro. Jurnal Ilmu Administrasi Dan Studi Kebijakan (JIASK), 5(1), 1–22. https://doi.org/10.48093/jiask.v5i1.91
Arfyanti, I., Fahmi, M., & Adytia, P. (2022). Penerapan Algoritma Decision Tree Untuk Penentuan Pola Penerima Beasiswa KIP Kuliah. Building of Informatics, Technology and Science (BITS), 4(3), 1196–1201. https://doi.org/10.47065/bits.v4i3.2275
Azzahrawani, N. R., Arkanudin, Alamri, A. R., Adha, N., Nuari, O. L., & Heronimus, V. (2024). Implementation of the Independent College KIP Policy at Tanjungpura University. JKMP (Jurnal Kebijakan Dan Manajemen Publik), 12(1), 58–68. https://doi.org/10.21070/jkmp.v12i1.1765
Digno, C., Jauhar, M. I., & Syaifullah, M. N. (2023). Pendekatan Deep Learning dan Gradient Boosting dalam Prediksi Harga Properti Airbnb dengan Analisis Sentimen. JELIKU (Jurnal Elektronik Ilmu Komputer Udayana), 12(1), 191. https://doi.org/10.24843/jlk.2023.v12.i01.p22
DjajaPutra, I. O., Prilianti, K. R., & Tirma Irawan, P. L. (2020). Implementasi Text Mining Untuk Analisis Opini Masyarakat Terhadap Kinerja Layanan Transportasi Online Dengan Analisis Faktor. Jurnal Simantec, 8(2), 45–53. https://doi.org/10.21107/simantec.v8i2.6764
Faadhilah, G., Gumilar, R., & Nurdianti, R. R. S. (2023). Pengaruh Lifestyle, Self Control, dan Financial Literacy terhadap Perilaku Konsumsi. Global Education Journal, 1(3), 177–190. https://doi.org/10.59525/gej.v1i3.175
Fauziyyah, A. (2020). ANALISIS SENTIMEN PANDEMI COVID19 PADA STREAMING TWITTER DENGAN TEXT MINING PYTHON. Jurnal Ilmiah SINUS, 18, 31. https://doi.org/10.30646/sinus.v18i2.491
Gagan Suganda, Marsani Asfi, Ridho Taufiq Subagio, & Ricky Perdana Kusuma. (2022). Penentuan Penerima Bantuan Beasiswa Kartu Indonesia Pintar (Kip) Kuliah Menggunakan Naïve Bayes Classifier. JSiI (Jurnal Sistem Informasi), 9(2), 193–199. https://doi.org/10.30656/jsii.v9i2.4376
Hanif, K. H., & Muntiari, N. R. (2024). Penerapan Algoritma Decision Tree, Svm, Naive Bayes Dalam Deteksi Stunting Pada Balita. METHOMIKA Jurnal Manajemen Informatika Dan Komputerisasi Akuntansi, 8(1), 105–109. https://doi.org/10.46880/jmika.vol8no1.pp105-109
Hosseini, P., Khoshsirat, S., Jalayer, M., Das, S., & Zhou, H. (2023). Application of text mining techniques to identify actual wrong-way driving (WWD) crashes in police reports. International Journal of Transportation Science and Technology, 12(4), 1038–1051. https://doi.org/10.1016/j.ijtst.2022.12.002
I Komang Dharmendra, Ricky Aurelius Nurtanto Diaz, Muhamad Samsudin, I Gusti Agung Ngurah Rai Semadi, & I Made Agus Wirahadi Putra. (2023). Text Mining Untuk Mendeteksi Emosi Pengguna Terhadap “Nusantara” Sebagai Nama Ikn. Jurnal Teknologi Informasi Dan Komputer, 9(5), 457–463. https://doi.org/10.36002/jutik.v9i5.2639
Izzhulhaq, R. R., & Trisnaningsih, S. (2022). Analisis Implementasi Kebijakan Pro Poor Budgeting pada Program Kartu Indonesia Pintar Terhadap Penerima Program Kartu Indonesia Pintar (Studi Kasus Mahasiswa S-1 Akuntansi Universitas Pembangunan Nasional “Veteran” Jawa Timur Angkatan 2021). J-MAS (Jurnal Manajemen Dan Sains), 7(2), 523. https://doi.org/10.33087/jmas.v7i2.444
Khotimah, K., Anggraini, L. W., Alfirnanda, W. T., & Tahyudin, I. (2022). Decision Support System for Selecting KIP-K Recipients at Amikom University, Purwokerto Using the TOPSIS Method. Internet of Things and Artificial Intelligence Journal, 2(4), 279–290. https://doi.org/10.31763/iota.v2i4.566
Kurniawan, I., & Susanto, A. (2019). Implementasi Metode K-Means dan Naïve Bayes Classifier untuk Analisis Sentimen Pemilihan Presiden (Pilpres) 2019. Eksplora Informatika, 9(1), 1–10. https://doi.org/10.30864/eksplora.v9i1.237
Kurniawijaya, P. A., & Karsana, I. W. W. (2023). Implementasi Metode AHP Dalam Sistem Penunjang Keputusan Penerima KIP Kuliah. JUKI : Jurnal Komputer Dan Informatika, 5(1), 22–31.
Marita, T., & Prayogi, A. (2024). Telaah Deskriptif Motivasi Berprestasi Mahasiswa Penerima Beasiswa Kartu Indonesia Pintar Kuliah (KIP-K). RUKASI: Jurnal Ilmiah Perkembangan Pendidikan Dan Pembelajaran, 1(02), 54–64. https://doi.org/10.70294/rr80jk09
Nitha Kumala Dewi. (2023). Identifikasi Berita Hoax dengan Menerapkan Algoritma Text Mining. Journal of Informatics, Electrical and Electronics Engineering, 2(3), 65–74. https://doi.org/10.47065/jieee.v2i3.888
Putri, N. A. Y., Subagio, R. T., & Asfi, M. (2021). Sistem Pendukung Keputusan Penilaian Kinerja Mahasiswa KIP Kuliah dengan Penerapan Metode TOPSIS dan PROMETHEE. Jurnal Media Informatika Budidarma, 5(4), 1394. https://doi.org/10.30865/mib.v5i4.3268
Vonega, D. A., Fadila, A., & Kurniawan, D. E. (2022). Analisis Sentimen Twitter Terhadap Opini Publik Atas Isu Pencalonan Puan Maharani dalam PILPRES 2024. Journal of Applied Informatics and Computing, 6(2), 129–135. https://doi.org/10.30871/jaic.v6i2.4300
Wijaya, N., & Panjaitan, E. S. (2024). Analisis Sentimen Ulasan Aplikasi Instagram di Google Play Store : Pendekatan Multinomial Naive Bayes dan Berbasis Leksikon. 6(2), 921–929. https://doi.org/10.47065/bits.v6i2.5615
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Desi Masdin, Nanang Ruhyana

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.










