Latent Dirichlet Allocation for Uncovering Fraud Cases on Twitter

Authors

  • Sallu Muharomah Universitas Islam Indonesia
  • Chanifah Indah Ratnasari Universitas Islam Indonesia
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v5i3.227

Keywords:

Fraud, Latent Dirichlet Allocation, Topic Modeling, Twitter

Abstract

Fraud is a phenomenon that continues to exist in society with a modus operandi that continues to evolve with the times. The mode of operation of fraud is continually evolving with technological advancements, globalization, and consumer behavior shifts. In today's digital age, social media is important in spreading information regarding fraud. Twitter is a social media platform that is widely used. Twitter provides easy and fast access to relevant information. As a result, to raise fraud awareness, it is critical to study the mode of operation of fraud spread on social media, particularly on Twitter. The Latent Dirichlet Allocation (LDA) approach is used in this work to classify and identify fraud issues often addressed by Indonesian Twitter users. By applying LDA modeling, this study aims to understand more comprehensively the fraudulent topics that often appear on Twitter. The research found that seven fraud topics are most commonly discussed by Twitter users in Indonesia, with the highest cohesion value of 0.491899.

Downloads

Download data is not yet available.

References

Bhat, M. R., Kundroo, M. A., Tarray, T. A., & Agarwal, B. (2020). Deep Lda : A New Way To Topic Model. Journal Of Information And Optimization Sciences, 41(3), 823–834. Https://doi.Org/10.1080/02522667.2019.1616911

Curiskis, S. A., Drake, B., Osborn, T. R., & Kennedy, P. J. (2020). An Evaluation Of Document Clustering And Topic Modelling In Two Online Social Networks: Twitter And Reddit. Information Processing And Management, 57(2). Https://doi.Org/10.1016/J.Ipm.2019.04.002

Fahlevvi, M. R., & Sn, A. (2022). Topic Modeling On Online News.Portal Using Latent Dirichlet Allocation (LDA). Ijccs (Indonesian Journal Of Computing And Cybernetics Systems), 16(4), 335. Https://doi.Org/10.22146/Ijccs.74383

Gupta, H., & Patel, M. (2021). Method Of Text Summarization Using Lsa And Sentence Based Topic Modelling With Bert. Proceedings - International Conference On Artificial Intelligence And Smart Systems, Icais 2021, 511–517. Https://doi.Org/10.1109/Icais50930.2021.9395976

Hafis, F. (2020). Apa Yang Harus Dilakukan Jika Jadi Korban Penipuan Online? Ini Solusi Kominfo. Https://Www.Kominfo.Go.Id/Content/Detail/27912/Apa-Yang-Harus-Dilakukan-Jika-Jadi-Korban-Penipuan-Online-Ini-Solusi-Kominfo/0/Sorotan_Media

Kannitha, D. Z. T., Mustafid, & Kartikasari, P. (2022). Pemodelan Topik Pada Keluhan Pelanggan Menggunakan Algoritma Latent Dirichlet Allocation Dalam Media Sosial Twitter. 11(2), 266–277. Https://Ejournal3.Undip.Ac.Id/Index.Php/Gaussian/

Khatulistiwa, G. (2021). Heboh Penipuan Berkedok Donasi Di Twitter, Ini Tips Hindari Tindak Kejahatan Ini Di Internet. Https://Journal.Sociolla.Com/Lifestyle/Tips-Hindari-Penipuan-Internet

Kurnia, N., Rahayu, Wendratama, E., Monggilo, Z. M. Z., Damayanti, A., Angendari, D. A. D., Abisono, F. Q., Shafira, I., & Desmalinda. (2022). Penipuan Digital Di Indonesia Modus, Medium, Dan Rekomendasi.

Mandal, K. (2020). Topic Modeling: Techniques And Ai Models. Https://Dzone.Com/Articles/Topic-Modelling-Techniques-And-Ai-Models

Nur, E. (2021). Peran Media Massa Dalam Menghadapi Serbuan Media Online The Role Of Mass Media In Facing Online Media Attacks.

Nurlayli, A., & Nasichuddin, M. A. (2019). Topic Modeling Penelitian Dosen Jptei Uny Pada Google Scholar Menggunakan Latent Dirichlet Allocation. 4(2), 154–161. Https://doi.Org/10.21831/Elinvo.V4i2

Polyzos, E., & Wang, F. (2022). Twitter And Market Efficiency In Energy Markets: Evidence Using Lda Clustered Topic Extraction. Energy Economics, 114. Https://doi.Org/10.1016/J.Eneco.2022.106264

Kaila, R. P. (2020). Informational Flow On Twitter-Corona Virus Outbreak-Topic Modelling Approach. International Journal Of Advanced Research In Engineering And Technology (Ijaret), 11(3), 128–134. Http://Www.Iaeme.Com/Ijaret/Index.Asp128http://Www.Iaeme.Com/Ijaret/Issues.Asp?Jtype=Ijaret&Vtype=11&Itype=3journalimpactfactor

Puspitasari, I. (2018). Pertanggungjawaban Pidana Pelaku Tindak Pidana Penipuan Online Dalam Hukum Positif Di Indonesia Oleh. 8(Mei), 1–14. Https://Id.Wikipedia.Org/Wiki/Globalisasi

Sasmita, R. A., & Falani, A. Z. (2018). Pemanfaatan Algoritma Tf/Idf Pada Sistem Informasi Ecomplaint Handling. Jurnal Link, 27(1).

Saura, J. R., Reyes-Menendez, A., & Palos-Sanchez, P. (2019). Are Black Friday Deals Worth It? Mining Twitter Users’ Sentiment And Behavior Response. Journal Of Open Innovation: Technology, Market, And Complexity, 5(3). Https://doi.Org/10.3390/Joitmc5030058

Shalihah, N. F. (2021). Ramai Penipuan “Cancel Order” Di Twitter, Bagaimana Menyiasatinya? Https://Www.Kompas.Com/Tren/Read/2021/02/17/123200865/Ramai-Penipuan-Cancel-Order-Di-Twitter-Bagaimana-Menyiasatinya-?Page=All

Silveira, R., Fernandes, C. G. O., Neto, J. A. M., Furtado, V., Ernesto, J., & Filho, P. (2021). Topic Modelling Of Legal Documents Via Legal-Bert 1.

Suhartono, D. (2018). Latent Dirichlet Allocation (LDA). Https://Socs.Binus.Ac.Id/2018/11/29/Latent-Dirichlet-Allocation-Lda/

Trinugraheni, N. F. (2022). Waspada Modus Penipuan Terbaru Di Twitter, Manfaatkan Kesuksesan Nft Moonbirds. Https://Www.Tribunnews.Com/Techno/2022/04/19/Waspada-Modus-Penipuan-Terbaru-Di-Twitter-Manfaatkan-Kesuksesan-Nft-Moonbirds

Wahyudi, D., Sugiarto Samosir, H., & Sintha Devi, R. (2022). Akibat Hukum Bagi Pelaku Tindak Pidana Penipuan Online Melalui Modus Arisan Online Di Media Sosial Elektronik.

Yuwita, N., Mauhibatillah, N., & Ulyah, H. ’. (2022). Dramaturgi: Budaya Flexing Berkedok Penipuan Di Media Sosial (Studi Kasus Indra Kenz Dan Doni Salmanan). Jurnal Komunikasi Dan Media, 7(1).

Zhou, Z., Qin, J., Xiang, X., Tan, Y., Liu, Q., & Xiong, N. N. (2020). News Text Topic Clustering Optimized Method Based On Tf-Idf Algorithm On Spark. Computers, Materials And Continua, 62(1), 217–231. Https://doi.Org/10.32604/Cmc.2020.06431

Zvornicanin, E. (2022, January 30). Topic Modeling And Latent Dirichlet Allocation (Lda). Https://Datascienceplus.Com/Topic-Modeling-And-Latent-Dirichlet-Allocation-Lda/

Downloads

Published

2023-06-23

How to Cite

Muharomah, S., & Ratnasari, C. I. (2023). Latent Dirichlet Allocation for Uncovering Fraud Cases on Twitter. Jurnal Riset Informatika, 5(3), 345–354. https://doi.org/10.34288/jri.v5i3.227

Issue

Section

Articles