Latent Dirichlet Allocation for Uncovering Fraud Cases on Twitter
DOI:
https://doi.org/10.34288/jri.v5i3.227Keywords:
Fraud, Latent Dirichlet Allocation, Topic Modeling, TwitterAbstract
Fraud is a phenomenon that continues to exist in society with a modus operandi that continues to evolve with the times. The mode of operation of fraud is continually evolving with technological advancements, globalization, and consumer behavior shifts. In today's digital age, social media is important in spreading information regarding fraud. Twitter is a social media platform that is widely used. Twitter provides easy and fast access to relevant information. As a result, to raise fraud awareness, it is critical to study the mode of operation of fraud spread on social media, particularly on Twitter. The Latent Dirichlet Allocation (LDA) approach is used in this work to classify and identify fraud issues often addressed by Indonesian Twitter users. By applying LDA modeling, this study aims to understand more comprehensively the fraudulent topics that often appear on Twitter. The research found that seven fraud topics are most commonly discussed by Twitter users in Indonesia, with the highest cohesion value of 0.491899.
Downloads
References
Bhat, M. R., Kundroo, M. A., Tarray, T. A., & Agarwal, B. (2020). Deep Lda : A New Way To Topic Model. Journal Of Information And Optimization Sciences, 41(3), 823–834. Https://doi.Org/10.1080/02522667.2019.1616911
Curiskis, S. A., Drake, B., Osborn, T. R., & Kennedy, P. J. (2020). An Evaluation Of Document Clustering And Topic Modelling In Two Online Social Networks: Twitter And Reddit. Information Processing And Management, 57(2). Https://doi.Org/10.1016/J.Ipm.2019.04.002
Fahlevvi, M. R., & Sn, A. (2022). Topic Modeling On Online News.Portal Using Latent Dirichlet Allocation (LDA). Ijccs (Indonesian Journal Of Computing And Cybernetics Systems), 16(4), 335. Https://doi.Org/10.22146/Ijccs.74383
Gupta, H., & Patel, M. (2021). Method Of Text Summarization Using Lsa And Sentence Based Topic Modelling With Bert. Proceedings - International Conference On Artificial Intelligence And Smart Systems, Icais 2021, 511–517. Https://doi.Org/10.1109/Icais50930.2021.9395976
Hafis, F. (2020). Apa Yang Harus Dilakukan Jika Jadi Korban Penipuan Online? Ini Solusi Kominfo. Https://Www.Kominfo.Go.Id/Content/Detail/27912/Apa-Yang-Harus-Dilakukan-Jika-Jadi-Korban-Penipuan-Online-Ini-Solusi-Kominfo/0/Sorotan_Media
Kannitha, D. Z. T., Mustafid, & Kartikasari, P. (2022). Pemodelan Topik Pada Keluhan Pelanggan Menggunakan Algoritma Latent Dirichlet Allocation Dalam Media Sosial Twitter. 11(2), 266–277. Https://Ejournal3.Undip.Ac.Id/Index.Php/Gaussian/
Khatulistiwa, G. (2021). Heboh Penipuan Berkedok Donasi Di Twitter, Ini Tips Hindari Tindak Kejahatan Ini Di Internet. Https://Journal.Sociolla.Com/Lifestyle/Tips-Hindari-Penipuan-Internet
Kurnia, N., Rahayu, Wendratama, E., Monggilo, Z. M. Z., Damayanti, A., Angendari, D. A. D., Abisono, F. Q., Shafira, I., & Desmalinda. (2022). Penipuan Digital Di Indonesia Modus, Medium, Dan Rekomendasi.
Mandal, K. (2020). Topic Modeling: Techniques And Ai Models. Https://Dzone.Com/Articles/Topic-Modelling-Techniques-And-Ai-Models
Nur, E. (2021). Peran Media Massa Dalam Menghadapi Serbuan Media Online The Role Of Mass Media In Facing Online Media Attacks.
Nurlayli, A., & Nasichuddin, M. A. (2019). Topic Modeling Penelitian Dosen Jptei Uny Pada Google Scholar Menggunakan Latent Dirichlet Allocation. 4(2), 154–161. Https://doi.Org/10.21831/Elinvo.V4i2
Polyzos, E., & Wang, F. (2022). Twitter And Market Efficiency In Energy Markets: Evidence Using Lda Clustered Topic Extraction. Energy Economics, 114. Https://doi.Org/10.1016/J.Eneco.2022.106264
Kaila, R. P. (2020). Informational Flow On Twitter-Corona Virus Outbreak-Topic Modelling Approach. International Journal Of Advanced Research In Engineering And Technology (Ijaret), 11(3), 128–134. Http://Www.Iaeme.Com/Ijaret/Index.Asp128http://Www.Iaeme.Com/Ijaret/Issues.Asp?Jtype=Ijaret&Vtype=11&Itype=3journalimpactfactor
Puspitasari, I. (2018). Pertanggungjawaban Pidana Pelaku Tindak Pidana Penipuan Online Dalam Hukum Positif Di Indonesia Oleh. 8(Mei), 1–14. Https://Id.Wikipedia.Org/Wiki/Globalisasi
Sasmita, R. A., & Falani, A. Z. (2018). Pemanfaatan Algoritma Tf/Idf Pada Sistem Informasi Ecomplaint Handling. Jurnal Link, 27(1).
Saura, J. R., Reyes-Menendez, A., & Palos-Sanchez, P. (2019). Are Black Friday Deals Worth It? Mining Twitter Users’ Sentiment And Behavior Response. Journal Of Open Innovation: Technology, Market, And Complexity, 5(3). Https://doi.Org/10.3390/Joitmc5030058
Shalihah, N. F. (2021). Ramai Penipuan “Cancel Order” Di Twitter, Bagaimana Menyiasatinya? Https://Www.Kompas.Com/Tren/Read/2021/02/17/123200865/Ramai-Penipuan-Cancel-Order-Di-Twitter-Bagaimana-Menyiasatinya-?Page=All
Silveira, R., Fernandes, C. G. O., Neto, J. A. M., Furtado, V., Ernesto, J., & Filho, P. (2021). Topic Modelling Of Legal Documents Via Legal-Bert 1.
Suhartono, D. (2018). Latent Dirichlet Allocation (LDA). Https://Socs.Binus.Ac.Id/2018/11/29/Latent-Dirichlet-Allocation-Lda/
Trinugraheni, N. F. (2022). Waspada Modus Penipuan Terbaru Di Twitter, Manfaatkan Kesuksesan Nft Moonbirds. Https://Www.Tribunnews.Com/Techno/2022/04/19/Waspada-Modus-Penipuan-Terbaru-Di-Twitter-Manfaatkan-Kesuksesan-Nft-Moonbirds
Wahyudi, D., Sugiarto Samosir, H., & Sintha Devi, R. (2022). Akibat Hukum Bagi Pelaku Tindak Pidana Penipuan Online Melalui Modus Arisan Online Di Media Sosial Elektronik.
Yuwita, N., Mauhibatillah, N., & Ulyah, H. ’. (2022). Dramaturgi: Budaya Flexing Berkedok Penipuan Di Media Sosial (Studi Kasus Indra Kenz Dan Doni Salmanan). Jurnal Komunikasi Dan Media, 7(1).
Zhou, Z., Qin, J., Xiang, X., Tan, Y., Liu, Q., & Xiong, N. N. (2020). News Text Topic Clustering Optimized Method Based On Tf-Idf Algorithm On Spark. Computers, Materials And Continua, 62(1), 217–231. Https://doi.Org/10.32604/Cmc.2020.06431
Zvornicanin, E. (2022, January 30). Topic Modeling And Latent Dirichlet Allocation (Lda). Https://Datascienceplus.Com/Topic-Modeling-And-Latent-Dirichlet-Allocation-Lda/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Sallu Muharomah, Chanifah Indah Ratnasari

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.