INFLUENCE OF LEAF IMAGING DISTANCE ON WATER GUAVA CLASSIFICATION USING NEURAL NETWORK WITH GRAY LEVEL CO-OCCURRENCE MATRIX FEATURES
DOI:
https://doi.org/10.34288/jri.v8i1.419Keywords:
Water Guava, GLCM, ANN-BP, Portrait distance, Seed identification, Computer visionAbstract
The development of Computer Vision technology has made a significant contribution to the agricultural sector, particularly in the identification of plants based on visual characteristics. Water guava (Syzygium aqueum) is one of the fruit commodities widely cultivated in Indonesia; however, its seedling varieties are often difficult to distinguish visually. Conventional methods relying on human observation tend to have low accuracy, highlighting the need for an accurate and efficient identification system from the early stages. This study aims to analyze the effect of varying imaging distances on the extraction results of leaf vein texture features using the Gray Level Co-occurrence Matrix (GLCM) method and to evaluate how this parameter influences the classification performance of water guava seedlings using the Backpropagation Artificial Neural Network (ANN). Unlike previous GLCM–ANN plant classification studies that primarily focused on lighting or species variation, this work systematically investigates imaging distance as a key factor in optimizing texture feature stability and improving model accuracy. Experiments were conducted using five imaging distances—7 cm, 9 cm, 11 cm, 13 cm, and 15 cm—with 2,500 images used for training data and 500 images for testing data. The results show that an imaging distance of 13 cm yielded the best performance, achieving 80% accuracy, where 80 out of 100 test images were correctly classified, supported by balanced precision, recall, and F1-score values indicating stable and reliable classification performance.
Downloads
References
Arnita, Marpaung, F., Aulia, F., Suryani, N., & Nabila, R. C. (2022). Computer Vision dan Pengolahan Citra Digital (A. B. Surya, Ed.; Pertama). Pustaka Aksara. www.pustakaaksara.co.id
Azizah, N., Nuswantoro, S. A., Jaya, F., Shofan, R. R., & Ansori. (2024). Algoritma Deep Learning untuk Pengenalan Gambar Jenis Daun. Anterior Jurnal, 23(III), 161–166. http://journal.umpalangkaraya.ac.id/index.php/anterior
Chan, S. R. O. S. (2021). Industri Perbenihan dan Pembibitan Tanaman Holtikultura di Indonesia : Kondisi Terkini dan Peluang Bisnis. Jurnal Hortuscoler, 2(1), 26–31.
Farihah, N., Mulianingrum, R. L., Handayani, M. V. S., Agastya, S. R., Dira, F. Z., Zhavira, M., Naufal, M., & Pramunendar, R. A. (2025). Deteksi Dini Penyakit Daun Padi menggunakan Integrasi GLCM dan KNN. Jurnal Informatika dan Teknik Elektro Terapan (JITET), 13(3), 15–21. https://doi.org/10.23960/jitet.v13i3.6543
Florestiyanto, M. Y., Yuwono, B., & Prasetyo, D. B. (2022). Dasar Pengolahan Citra Digital (Kedua). Lembaga Penelitian dan Pengabdian kepada Masyarakat.
Jiwanata, I. R., & Hermanto, D. (2023). Perbandingan Tingkat Akurasi Daging Bakso Berdasarkan Jarak Potret Menggunakan Fitur GLCM Dengan Metode JST. 10(4), 93–103. http://jurnal.mdp.ac.id
Kurniawan, M. M., Gasim, & Permatasari, I. (2024). Pengaruh Jarak Potret Urat Daun pada Identifikasi Bibit Jeruk menggunakan Metode JST-PB dan Fitur GLCM. Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST), 451–461.
Letik, M. E. F., & Bisilisin, F. Y. (2024). Klasifikasi Tanaman Herbal Berdasarkan Tekstur Daun menggunakan Backpropagation Berbasis Citra. KETIK : Jurnal Informatika, 1(6), 1–10.
Lorenza, S., & Gasim. (2025). Pengaruh Pencahayaan pada Pemotretan Tekstur Urat Daun pada Identifikasi Jenis Bibit Mangga dengan Metode Pengenalan JST-PB dan Fitur GLCM. MEDIALOG: Jurnal Ilmu Komunikasi, VIII(I), 2684–9054.
Miansyah, R., Gasim, & Ramadhan, M. (2024). Pengenalan Bibit Pepaya California menggunakan Tekstur Urat Daun dengan Metode JST-PB dan GLCM. Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST), 192–203.
Nurhikam, A. S., Agung, W. P., Rohman, S., & Saputra, I. M. (2024). Klasifikasi Tanaman Obat Berdasarkan Citra Daun Menggunakan Bacpropagation Neural Networks. JIKO (Jurnal Informatika Dan Komputer), 8(1), 1. https://doi.org/10.26798/jiko.v8i1.945
Parinduri, S. K., Sihotang, A., Adelina, M. C., & Purnama, A. (2023). Analisis Jaringan Syaraf Tiruan terhadap Klasifikasi Citra Daun Bunga menggunakan Backpropagation. Jurnal Device, 13(1), 1–7.
Ramadhani, F., Gasim, & Suhandi, N. (2025). Perbandingan Akurasi Jarak Potret untuk Pengenalan Jenis Bibit Mangga Metode JST-PB dan Fitur GLCM. Bit-Tech, 7(3), 1022–1032. https://doi.org/10.32877/bt.v7i3.2303
Saptadi, N. T. S., Kristiawan, H., Nugroho, A. Y., Rahayu, N., Suwarmiyati, Waseso, B., Intan, I., Khairunnas, Martono, Saputra, P. Y., Sutriawan, Soekarman, Mahatma, K., Yunianto, I., Soleh, O., Sutoyo, Muh. N., Siswoyo, B., & Aliyah. (2025). Deep Learning: Teori, Algoritma, dan Aplikasi (N. Azizah, Ed.). Sada Kurnia Pustaka.
Setiya Nugraha, D., Gasim, & Suhandi, N. (2024). Pengaruh Pencahayaan pada Pemotretan Urat Daun pada Identifikasi Jenis Bibit Kelengkeng dengan Metode Pengenalan JST-PB dan Fitur GLCM. Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST), 384–389.
Silvani, W., Aurelia, S., Zulatifa, N., & Agustin, T. (2024). Pengaruh Jumlah Epoch terhadap Akurasi Model Convolutional Neural Network dalam Klasifikasi Penyakit pada Tanaman Padi. Seminar Nasional Amikom Surakarta (SEMNASA), 179–190. www.kaggle.net.
Srg, S. A. R., Zarlis, M., & Wanayumini. (2022). Klasifikasi Citra Daun dengan GLCM (Gray Level Co-Occurence) dan K-NN (K-Nearest Neighbor). MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 21(2), 477–488. https://doi.org/10.30812/matrik.v21i2.1572
Stepanus, K., & Wijaya, N. (2023). Perbandingan Tingkat Akurasi Kadar Air pada Cat Dinding Berdasarkan Jarak Potret menggunakan Fitur GLCM Metode JST. Jurnal Teknik Informatika dan Sistem Informasi, 10(4), 104–115. http://jurnal.mdp.ac.id
Supriyanto, Sunardi, & Riadi, I. (2022). Pengaruh Nilai Hidden layer dan Learning Rate terhadap Kecepatan Pelatihan Jaringan Syaraf Tiruan Backpropagation. JIKO (Jurnal Informatika dan Komputer), 6(1), 27–33.
Syah, M. J. A. (2022). Menggapai Laba dari Budidaya Jambu Bol (Pertama). Nas Media Pustaka. https://www.researchgate.net/publication/361803998
Syahidi, A. A. (2024). Pengolahan Citra Digital dan Dasar Visi Komputer dengan Python (R. Fauzan, Ed.; Pertama). Poliban Press.
Syarifah, A., Riadi, A. A., & Susanto, A. (2022). Klasifikasi Tingkat Kematangan Jambu Bol Berbasis Pengolahan Citra Digital menggunakan Metode K-Nearest Neighbor. JIMP : Jurnal Informatika Merdeka Pasuruan, 7(1), 27–35.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 muhammad haviz irfani, Gasim, Andika Afrianto

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.










