Divorce Factor Classification Uses The C4.5 Algorithm Based On Particle Swarm Optimization

Authors

  • Endang Palupi Universitas Bina Sarana Informatika
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v6i3.307

Keywords:

C4.5 Algorithm , Classification, particle swarm optimization

Abstract

Cases of household divorce increased in the West Java area during the Covid-19 pandemic. The pandemic has increased personal relationships and interactions between family members, and some families are using this opportunity to strengthen their relationships. However, increased family interaction can also result in increased conflict, leading to divorce. The author classifies divorce factors that have increased during the pandemic using the C4.5 Algorithm based on Particle Swarm Optimization (PSO). The main factors for divorce are economic factors that have hit during the pandemic coupled with unstable mental conditions resulting in poor communication and continuous fighting. So that the husband/wife leaves one of the parties, infidelity, and adultery, then domestic violence and ending in divorce. The dataset was taken from the West Java BPS website, and the author split the data, namely 80% training data and 20% testing data, to avoid overfitting. Research results on the classification of divorce factors during the pandemic using the C4.5 algorithm based on particle swarm optimization are an accuracy value of 87.50% and an AUC (Area Under Curve) value of 0.807, which is included in the good classification category.

Downloads

Download data is not yet available.

References

.Admaja, M. D., Hidayah, N., & Suparwi. (2021). Faktor-Faktor Penyebab Perceraian Selama Masa Pandemi Covid-19 di Pengadilan Agama Sukoharjo. Jurnal Penelitian Serambi Hukum, 14(2), 33–41. Retrieved from http://journal.uniba.ac.id/index.php/SH/article/view/705

Arikunto, S. (2006). Prosedur Penelitian Suatu Pendekatan Praktek (Revisi VI). Jakarta: Rineka Cipta.

Feldman, R., & James, S. (2007). The Text Mining Handbook (Cambridge, Ed.). New York.

Iriadi, N., & Nuraeni, N. (2016). Kajian Penerapan Metode Klasifikasi Data Kelayakan Kredit Pada Bank. Jurnal Teknik Komputer AMIK BSI, II(1), 132–137. Retrieved from https://ejournal.bsi.ac.id/ejurnal/index.php/jtk/article/view/371/

Kantinit. (2023). Algoritma C4.5: Pengertian, Cara kerja dan Contoh Implementasi. Retrieved from KantinIT website: https://kantinit.com/kecerdasan-buatan/algoritma-c4-5-pengertian-cara-kerja-dan-contoh-implementasi/

Mardiana, L., Kusnandar, D., & Satyahadewi, N. (2022). Analisis Diskriminan Dengan K Fold Cross Validation Untuk Klasifikasi Kualitas Air Di Kota Pontianak. Buletin Ilmiah Mat. Stat. Dan Terapannya (Bimaster), 11(1), 97–102. Retrieved from https://jurnal.untan.ac.id/index.php/jbmstr/article/view/51608

Maulid, R. (2023). RapidMiner : Tools Data Science Andalan Data Experts. Retrieved from DQLab website: https://dqlab.id/rapidminer--tools-data-science-andalan-data-experts

Muhamad, M., Windarto, A. P., & Suhada, S. (2019). Penerapan Algoritma C4.5 Pada Klasifikasi Potensi Siswa Drop Out. KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 3(1), 1–8. https://doi.org/10.30865/komik.v3i1.1688

Oktafiani, R., Hermawan, A., & Avianto, D. (2023). Pengaruh Komposisi Split data Terhadap Performa Klasifikasi Penyakit Kanker Payudara Menggunakan Algoritma Machine Learning. Jurnal Sains Dan Informatika, 9(April), 19–28. https://doi.org/10.34128/jsi.v9i1.622

Prihartono, W., Tohidi, E., Ahmad Fauzi, I., & Danar Dana, R. (2023). Implementasi Data Mining Clustering Dalam Mengelompokan Kasus Perceraian Yang Terjadi Di Provinsi Jawa Barat Menggunakan Algoritma K-Means. Kopertip : Jurnal Ilmiah Manajemen Informatika Dan Komputer, 7(3), 64–70. https://doi.org/10.32485/kopertip.v7i3.328

Qadrini, L., Seppewali, A., & Aina, A. (2021). Decision Tree dan Adaboost pada Klasifikasi Penerima Program Bantuan Sosial. Jurnal Inovasi Penelitian, 2(7), 1959–1966. https://doi.org/10.47492/JIP.V2I7.1046

Rizki, A. M., & Nurlaili, A. L. (2021). Algoritme Particle Swarm Optimization (PSO) untuk Optimasi Perencanaan Produksi Agregat Multi-Site pada Industri Tekstil Rumahan. Journal of Computer, Electronic, and Telecommunication, 1(2), 1–9. https://doi.org/10.52435/complete.v1i2.73

Sari, D. L., & Gemasih, H. (2021). Penerapan Data Mining Dalam Proses Prediksi Perceraian Menggunakan Algoritma Naive Bayes di Kabupaten Aceh Tengah. 4(1), 23–35. https://doi.org/10.14716/ijtech.v0i0.0000

Sugiyono. (2018). Metode Penelitian Kuantitatif (Bandung, Ed.). Bandung: Alfabeta.

Sulistiyanto, S. (2018). Penerapan C4.5 Berbasis Particle Swarm Optimization (PSO) dalam Memprediksi Siswa Lolos Seleksi Perguruan Tinggi. Prosiding Seminar Nasional Darmajaya, 1(1), 162–170. Retrieved from https://jurnal.darmajaya.ac.id/index.php/PSND/article/view/1242

Syarif, M. R. R., Purnamasari, I., & Mayasari, R. (2021). Algoritma Fp-Growth untuk Mengetahui Pola Perceraian Selama Masa Pandemi COVID-19 di Kab. Majalengka. Journal of Information Technology and Computer Science (INTECOMS), 4(2). Retrieved from https://journal.ipm2kpe.or.id/index.php/INTECOM/article/view/2782

Yasifah, N. A. N. N., Azahra, B. A., Ridha, Z. S., Nurhasanah, H., Amaliah, N., Setianing, I. D., & Mukarromah, S. (2023). Faktor-Faktor Penyebab Meningkatnya Perceraian Pada Masa Covid-19. Jurnal Yustitia, 24(1). https://doi.org/10.53712/yustitia.v24i1.1969

Downloads

Published

2024-06-15

How to Cite

Palupi, E. (2024). Divorce Factor Classification Uses The C4.5 Algorithm Based On Particle Swarm Optimization. Jurnal Riset Informatika, 6(3), 185–190. https://doi.org/10.34288/jri.v6i3.307

Issue

Section

Articles