House Price Prediction Using Data Mining with Linear Regression and Neural Network Algorithms
DOI:
https://doi.org/10.34288/jri.v6i1.262Keywords:
Linear Regression, Neural Network, PredictionsAbstract
The need for housing in big cities is very high because most offices and economic centers are in big cities. Limited land and high demand cause house prices to rise. Many developers build housing on the outskirts of big cities with access to trains and toll roads to make transportation easier. Property developers compete by providing the best prices, various choices of house specifications, ease of the mortgage process, and attractive promotions such as no down payment. A house is a long-term investment whose price increases yearly, so proper analysis is needed to buy a place to live in. Several factors influence the price of a house, including location, land area, building area, building type, and so on. This research aims to create a house price prediction model using the Linear Regression Algorithm and Neural Network so that the results can be useful for property agents in predicting house sales or from the buyer's side in predicting house prices. The results of this research use the Linear Regression Algorithm RMSE 0.775, while the Neural Network Algorithm uses RMSE 0.645. From this research, modeling using the Linear Regression Algorithm has better results. Still, the Linear Regression Algorithm and Neural Network Algorithm have RMSE results that are close to accurate and have small errors.
Downloads
References
Admin Aesia. (2023). 5 Faktor yang Mempengaruhi Harga Jual Rumah. https://aesia.kemenkeu.go.id/berita-properti/properti/5-faktor-yang-mempengaruhi-harga-jual-rumah-98.html
Afika, Y. A., & Ariusni. (2019). Faktor - Faktor Yang Mempengaruhi Permintaan Rumah Di Indonesia. Jurnal Kajian Ekonomi Dan Pembangunan, 1(Mei), 497–508. https://doi.org/10.1002/ejoc.201200111
Agus Setiawan, T. (2023). Penerapan Linear Regression Pada Estimasi Harga Sewa Alat Berat Pada PT FJB. Jurnal TEKINKOM, 6(1), 135–142. https://doi.org/10.37600/tekinkom.v6i1.733
Aji, B. G., Sondawa, D. C. A., Gifari, M. R., & Wijayanto, S. (2023). Penerapan Algoritma K-Means Untuk Clustering Harga Rumah Di Bandung. Jurnal Ilmiah Informatika Global, 14(2), 17–23.
Ariyani, V., Putri, P., Prasetijo, A. B., & Eridani, D. (2022). Perbandingan Kinerja Algoritme Naïve Bayes Dan K-Nearest Neighbor (Knn) Untuk Prediksi Harga Rumah. Jurnal Ilmiah Teknik Elektro, 4(4). https://ejournal.undip.ac.id/index.php/transmisi
Bayu Saputra. (2023). Riset Menunjukkan Tren Harga Rumah Naik 2,5 Persen Pada September 2023. https://www.antaranews.com/berita/3778617/riset-menunjukkan-tren-harga-rumah-naik-25-persen-pada-september-2023
Galuh Nurvinda. (2021). Langkah Awal dalam Pemrosesan Data: Data Preprocessing dalam Data Mining. DQLab. https://dqlab.id/langkah-awal-dalam-pemrosesan-data-dalam-data-mining#:~:text=Data preprocessing merupakan sekumpulan teknik,data transformation%2C dan data reduction.
Haryanto, C., Rahaningsih, N., & Muhammad Basysyar, F. (2023). Komparasi Algoritma Machine Learning Dalam Memprediksi Harga Rumah. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 533–539. https://doi.org/10.36040/jati.v7i1.6343
Konsultan Data Penelitian & ArcGIS. (n.d.). Mengenal Analisis Regresi Linier dalam Penelitian. https://patrastatistika.com/analisis-regresi-linear/
Larose, & Daniel T. (2005). Discovering Knowledge in Data : An Introduction to Data Mining. JohnWilley’s & Sons, Inc.
Mu’tashim, M. L., Muhayat, T., Damayanti, S. A., Zaki, H. N., & Wirawan, R. (2021). Analisis Prediksi Harga Rumah Sesuai Spesifikasi Menggunakan Multiple Linear Regression. Informatik : Jurnal Ilmu Komputer, 17(3), 238. https://doi.org/10.52958/iftk.v17i3.3635
Mustakim. (2022). Empat Sumber Dataset untuk Belajar dan Penelitian Bidang Data Mining. Https://Mustakim.Irpi.or.Id/. https://mustakim.irpi.or.id/2022/05/18/empat-sumber-dataset-untuk-belajar-dan-penelitian-bidang-data-mining/
Pertiwi, M. W., & Indrajit, R. E. (2017). Metode Regresi Linier Untuk Prediksi Pengadaan Inventaris Barang. Simposium Nasional Ilmu Pengetahuan Dan Teknologi (SIMNASIPTEK), 27–30.
Populix. (2023). Koefisien Korelasi: Pengertian, Rumus, dan Cara Hitungnya. https://info.populix.co/articles/koefisien-korelasi-adalah/#:~:text=%3E 0 – 0%2C25 %3A,0%2C99 %3A Korelasi sangat kuat
Qotrun A. (2021). 5 Jenis-Jenis Penelitian: Kuantitatif, Kualitatif sampai Campuran. Gramedia Blog. https://www.gramedia.com/literasi/jenis-jenis-penelitian/
Rahayuningtyas, E. F., Rahayu, F. N., & Azhar, Y. (2021). Prediksi Harga Rumah Menggunakan General Regression Neural Network. Jurnal Informatika, 8(1), 59–66. https://doi.org/10.31294/ji.v8i1.9036
Saiful, A. (2021). Prediksi Harga Rumah Menggunakan Web Scrapping dan Machine Learning Dengan Algoritma Linear Regression. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 8(1), 41–50. https://doi.org/10.35957/jatisi.v8i1.701
Santoso, I., Gata, W., & Paryanti, A. B. (2021). Penggunaan Feature Selection di Algoritma Support Vector Machine untuk Sentimen Analisis Komisi Pemilihan Umum. JURNAL RESTI (Rekayasa Sistem Dan Teknologi Informasi), 1(10), 5–11.
Shukla, A., Tiwari, R., & Kala, R. (2010). Real Life Applications of Soft Computing. Taylor and Francis Group, LLC.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Endang Palupi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.










