Phrase Detection's Impact on Sentiment Analysis of Public Opinion and online Media Toward Political Figures
DOI:
https://doi.org/10.34288/jri.v6i2.268Keywords:
Sentiment Analysis, Text Preprocessing, N-Gram, Politic, Opinion, Online Media, TwitterAbstract
Public opinion of political figures and policy significantly impacts general elections. Sentiment analysis, as a method to comprehend opinion and emotion in texts, requires the step of text preprocessing to improve data quality. However, textual data often encounters irrelevant words and ambiguous language. These conditions can impact the accuracy of sentiment analysis. Given the significance of precisely interpreting public opinion toward political figures, these issues may result in biased or inaccurate sentiment analysis outcomes. Irregular punctuation or unclear language can disturb the text's intended context, compromising sentiment analysis quality. Additionally, irrelevant words can obscure the focus of the analysis, causing fundamental changes in the original text's meaning. This research focuses on the impact of a specific preprocessing technique, namely Phrase Detection with N-Gram, on sentiment analysis of political figures. By applying this method, the study aims to detail the effects of using Bigram, Trigram, and Unigram on the quality of sentiment analysis, particularly in the context of political figures on Twitter and online media articles. This research indicates that using Bigram in Phrase Detection provides more significant results than Trigram and Unigram for most political figures at Twitter, with the highest accuracy score of 88,23%. Sentiment analysis of articles in online media also indicates various results depending on the type of N-Gram. The results indicate that using N-gram phrase detection can influence the accuracy of sentiment analysis, and the resulting accuracy values are pretty high.
Downloads
References
Administrator. (2023, May 15). Cara Menggali Insight Pelanggan dengan Analisis Sentimen. Retrieved from ivosight: https://ivosights.com/read/artikel/analisis-sentimen-cara-menggali-insight-pelanggan-dengan
Alfriyanto, M. L. (2020). Analisis Sentimen Terhadap Operator Seluler Di Media Sosial Twitter Menggunakan Metode Klasifikasi Naïve Bayes Dan Metode Topsis. Gresik: Universitas Muhammadiyah Gresik.
Alwasi'a, A. (2020). Analisis Sentimen Pada Review Aplikasi Berita Online Menggunakan Metode Maximum Entropy. Yogyakarta: Universitas Islam Indonesia.
Andriana, N. (2022). Pandangan Partai Politik Terhadap Media Sosial. Jurnal Penelitian Politik, 51-65.
Anjani, S. A., & Fauzan, A. (2021). Implementasi n-Gram dalam Analisis Sentimen Masyarakat DIY Terhadap PSBB Jawa-Bali Jilid II Menggunakan Naive Bayes Classifier. Statistika, 21(2), 73-83.
Anugerah, F. (2017). Perbaikan Kinerja Praproses Karakter Berulang Dalam Mengenali Kata Pada Klasifikasi Sentimen Berbahasa Indonesia. Surabaya: Institut Teknologi Sepuluh Nopember.
Arthana, R. (2019, April 05). Mengenal Accuracy, Precision, Recall dan Specificity serta yang diprioritaskan dalam Machine Learning. (Medium) Retrieved May 28, 2023, from https://rey1024.medium.com/mengenal-accuracy-precission-recall-dan-specificity-serta-yang-diprioritaskan-b79ff4d77de8
Asgarnezhad, R., Shekofteh, M., & Boroujeni, F. (2017). Improving diagnosis of diabetes mellitus using combination of preprocessing techniques. Journal of Theoretical and Applied Information Technology, 2889–2895.
Catalan, N. (2022, December 14). Pelabelan Data Otomatis vs Pelabelan Data Manual: Apa Bedanya? Retrieved from tasq.ai: https://www.tasq.ai/blog/automated-data-labeling-vs-manual-data-labeling/
Findawati , Y., & Rosid, M. A. (2020). Buku Ajar Text Mining. Sidoarjo: UMSIDA Press.
Gandhi, R. (2018, May 5). Naive Bayes Classifier. (Towards Data Science) Retrieved June 04, 2023, from https://towardsdatascience.com/naive-bayes-classifier-81d512f50a7c
Hakim, B. (2021). Analisa Sentimen Data Text Preprocessing Pada Data Mining Dengan Menggunakan Machine Learning. Journal of Business and Audit Information Systems, 4(2), 16-22.
Indranandita, A., Susanto, B., & Rahmat, A. (2008). Sistem Klasifikasi dan Pencarian Jurnal dengan Menggunakan Metode Naive Bayes dan Vector Space Model. Jurnal Informatika, 4, 10-18.
Julidhiya, D. A. (2022). Pengaruh Pre-processing Terhadap Analisis Sentimen Pada Media Sosial Twitter dengan Perbaikan Kata Tidak Baku Dan Typo Correction. Bandung: Universitas Komputer Indonesia.
Khairunnisa, S., Adiwijaya, & Said, A. (2021). Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19). Jurnal Media Informatika Budidarma, 406-414.
Kumar, A., & Batut, B. (2019, March 7). Machine learning: classification and regression. Retrieved from Galaxy Training: https://training.galaxyproject.org/training-material/topics/statistics/tutorials/classification_regression/tutorial.html
Putranto, H. A., Setyawati, O., & Wijono. (2016). Pengaruh Phrase Detection dengan POS-Tagger terhadap Akurasi Klasifikasi Sentimen menggunakan SVM. Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI), 252-259.
Rozi, I. F., Firdausi, A. T., & Islamiyah, K. (2020). Analisis Sentimen Pada Twitter Mengenai Pasca Bencana Menggunakan Metode Naïve Bayes Dengan Fitur N-Gram. JIP (Jurnal Informatika Polinema), 33-39.
Sugiyono. (2013). Metode Penelitian Kuantitatif, Kualitatif Dan R&D. Bandung: ALFABETA, CV.
Wilianto, K. (2021, October 22). Evaluation Metrics pada Computer Vision dari Klasifikasi hingga Deteksi Objek. Retrieved from Medium: https://medium.com/data-folks-indonesia/evaluation-metrics-pada-computer-vision-dari-klasifikasi-hingga-deteksi-objek-5049d3fd90d2
Yunita, N. (2016). Analisis Sentimen Berita Artis Dengan Menggunakan Algoritma Support Vector Machine dan Particle Swarm Optimazion. Jurnal Sistem Informasi STMIK Antar Bangsa, 104-112.
Zeniarja, J., Salam, A., & Achsanu, I. (2020). Sistem Koreksi Jawaban Esai Otomatis (E-Valuation) dengan Vector Space Model pada Computer Based Test (CBT). SEMINAR NASIONAL Dinamika Informatika 2020 Universitas PGRI Yogyakarta, 91-96.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Muhammad Irsa Nurodin, Yan Puspitarani
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.