Masked Face Detection Automation System Using Mask Threshold and Viola Jones Method
Abstract
Reducing or even breaking the chain of Covid-19 virus infections during a pandemic is important. The techniques that are encouraged are mandatory hand washing, social distancing, and mandatory wearing of masks. Wearing masks is urgent, therefore requiring people to wear masks is the right policy. This study aims to detect people who use masks or do not use masks by applying the Viola Jones method. In this study, modification of the tresholder algorithm was carried out by applying a mask thresholder for optimization of facial segmentation. Meanwhile viola jones was built by combining several concepts of Haar Feature, Integral Image, AdaBoost, classivier Cascade into a main method for detecting objects. The performance of the proposed method for face detection has an accuracy of 95%, a precision of 94.73%, and a recall of 100%. 5. The masked face detection test has an accuracy of 94%, precision 100%, and recall 90.90%
Downloads
References
Abidin, S. (2018). Deteksi Wajah Menggunakan Metode Haar Cascade Classifier Berbasis Webcam Pada Matlab. Jurnal Teknologi Elekterika, 15(1), 21. https://doi.org/10.31963/elekterika.v15i1.2102
Anwar, K., & Setyowibowo, S. (2021). Segmentasi Kerusakan Daun Padi pada Citra Digital. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 7(1), 39. https://doi.org/10.26418/jp.v7i1.42331
Anwar, K., Yunus, M., & Sujito, S. (2021). Segmentasi Citra Warna Otomatis Rambu Lalu Lintas dengan Penerapan Mask Thresholder. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 7(3), 481. https://doi.org/10.26418/jp.v7i3.49969
Budiman, B., Lubis, C., & Perdana, N. J. (2021). Pendeteksian Penggunaan Masker Wajah Dengan Metode Convolutional Neural Network. Jurnal Ilmu Komputer Dan Sistem Informasi, 9(1), 40–47. https://doi.org/10.24912/jiksi.v9i1.11556
Fendi, S., Triyanto, A., Hidayati, N., & P, D. E. (2020). Face Detection Dengan Menggunakan Algoritma Viola Joness. Stmik Amikom, January. https://doi.org/10.13140/RG.2.2.35193.21606
Florestiyanto, M. Y., Pratomo, A. H., & Sari, N. I. (2020). Penguatan Ketepatan Pengenalan Wajah Viola-Jones Dengan Pelacakan. Teknika, 9(1), 31–37. https://doi.org/10.34148/teknika.v9i1.241
Hassan, B. A., & Dawood, F. A. A. (2022). Facial image detection based on the Viola-Jones algorithm for gender recognition. International Journal of Nonlinear Analysis and Applications, 6822(November), 1–7. https://doi.org/10.22075/IJNAA.2022.7130
Hui, D. S., I Azhar, E., Madani, T. A., Ntoumi, F., Kock, R., Dar, O., Ippolito, G., Mchugh, T. D., Memish, Z. A., Drosten, C., Zumla, A., & Petersen, E. (2020). The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — The latest 2019 novel coronavirus outbreak in Wuhan, China. International Journal of Infectious Diseases, 91, 264–266. https://doi.org/10.1016/j.ijid.2020.01.009
Javed Mehedi Shamrat, F. M., Majumder, A., Antu, P. R., Barmon, S. K., Nowrin, I., & Ranjan, R. (2021). Human Face Recognition Applying Haar Cascade Classifier. Human Face Recognition Applying Haar Cascade Classifier," in Lecture Notes in Networks and Systems, (March), 1–15. https://doi.org/10.1007/978-981-16-5640-8_12
Jones, M. (2004). Robust Real-time Object Detection. International Journal of Computer Vision, 57(2), 137–154. https://doi.org/10.1023/B:VISI.0000013087.49260.fb
Karim Sujon, M. R., Hossain, M. R., Al Amin, M. J., Bepery, C., & Rahman, M. M. (2022). Real-time face mask detection for COVID-19 prevention. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference, CCWC 2022, November, 341–346. https://doi.org/10.1109/CCWC54503.2022.9720764
Kirana, C., & Isnanto, B. (2016). Face Identification For Presence Applications Using Violajones and Eigenface Algorithm. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 5(2), 7–14. https://doi.org/10.32736/sisfokom.v5i2.189
Minu, M. S., Arun, K., Tiwari, A., & Rampuria, P. (2020). Face recognition system based on haar cascade classifier. International Journal of Advanced Science and Technology, 29(5), 3799–3805.
Monica M, K. R. S. (2021). IRJET- Deep Learning Technique to Detect Face Mask in the Covid-19 Pandemic Period. Irjet, 8(8).
Mufid Naufal Baay, Astria Nur Irfansyah, M. A. (2021). Sistem Otomatis Pendeteksi Wajah Bermasker Menggunakan Deep Learning. Jurnal Teknik ITS, 10(1), 64–70.
Nono Heryana,Rini Mayasari, K. A. B. (2020). Penerapan Haar Cascade Classification Model untuk Deteksi Wajah , Hidung , Mulut , dan Mata Menggunakan Algoritma Viola-Jones. Jurnal Ilmu Komputer Dan Teknologi Informasi, 5(1), 21–25.
Öztürk, G., Eldoğan, O., Karayel, D., & Atali, G. (2021). Face Mask Detection on LabVIEW. Artificial Intelligence Theory and Applications, 1(2), 9–18. https://dergipark.org.tr/en/pub/aita/issue/70791/1137977
Padilla, R., Ferreira, C., & Filho, F. C. (2012). Evaluation of Haar Cascade Classifiers for Face Detection Optimum Baseline Wander removal in ECG signals View project. International Journal of Computer, Electrical, Automation, Control and Information Engineering, 6(4), 466–469.
Palli, G. H., Shah, A. A., Chowdhry, B. S., Hussain, T., Ur Rehman, U., & Mirza, G. F. (2021). Recognition of Train Driver's Attention Using Haar Cascade. HONET 2021 - IEEE 18th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI, December, 132–136. https://doi.org/10.1109/HONET53078.2021.9615452
Poorvi Taunk, G. Vani Jayasri,Padma Priya J, N. S. K. (2020). Face Detection using Viola Jones with Haar Cascade. Test Engineering and Management ·, 83(11), 131–134. https://doi.org/10.46501/ijmtst061124
Pratama, M. A. H. P. (2022). Alat Pendeteksi Wajah Mahasiswa Universitas Trunojoyo Madura (UTM) Menggunakan Metode Viola-Jones. ALINIER: Journal of Artificial Intelligence & Applications, 2(2), 50–60. https://doi.org/10.36040/alinier.v2i2.4290
Putri, R. E., Matulatan, T., & Hayaty, N. (2019). Sistem Deteksi Wajah Pada Kamera Realtime dengan menggunakan Metode Viola Jones. Jurnal Sustainable: Jurnal Hasil Penelitian Dan Industri Terapan, 8(1), 30–37. https://doi.org/10.31629/sustainable.v8i1.526
Sakshi, S., Gupta, A. K., Singh Yadav, S., & Kumar, U. (2021). Face Mask Detection System using CNN. 2021 International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2021, March 212–216. https://doi.org/10.1109/ICACITE51222.2021.9404731
Suharso, A. (2017). Pengenalan Wajah Menggunakan Metode Viola-Jones dan Eigenface Dengan Variasi Posisi Wajah Berbasis Webcam. Techno Xplore : Jurnal Ilmu Komputer Dan Teknologi Informasi, 1(2). https://doi.org/10.36805/technoxplore.v1i2.107
Suhery, C., & Ruslianto, I. (2017). Identifikasi Wajah Manusia untuk Sistem Monitoring Kehadiran Perkuliahan menggunakan Ekstraksi Fitur Principal Component Analysis (PCA). Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 3(1), 9. https://doi.org/10.26418/jp.v3i1.19792
Utaminingrum, F., Primaswara, R., & Arum Sari, Y. (2017). Image processing for rapidly eye detection based on robust haar sliding window. International Journal of Electrical and Computer Engineering, 7(2), 823–830. https://doi.org/10.11591/ijece.v7i2.pp823-830
VAIBHAV, H. (2020). Face Identification using Haar cascade classifier. Medium, 8(5), 1–5. https://medium.com/geeky-bawa/face-identification-using-haar-cascade-classifier-af3468a44814
Vu, H. N., Nguyen, M. H., & Pham, C. (2022). Masked face recognition with convolutional neural networks and local binary patterns. Applied Intelligence, 52(5), 5497–5512. https://doi.org/10.1007/s10489-021-02728-1
Wihandika, R. (2021). Deteksi Masker Wajah Menggunakan Metode Adjacent Evaluation Local Binary Patterns. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(4), 705–712. https://doi.org/10.29207/resti.v5i4.3094
Yadav, S. (2020). Deep Learning based Safe Social Distancing and Face Mask Detection in Public Areas for COVID-19 Safety Guidelines Adherence. International Journal for Research in Applied Science and Engineering Technology, 8(7), 1368–1375. https://doi.org/10.22214/ijraset.2020.30560


Copyright (c) 2022 Aminurachma Aisyah Nilatika, Khoerul Anwar, Eka Yuniar

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Jurnal Riset Informatika agrees to the following terms:
- The author retains the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-NonCommercial 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- The author is permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).
Read more about the Creative Commons Attribution-NonCommercial 4.0 Licence here: https://creativecommons.org/licenses/by-nc/4.0/.