FACIAL RECOGNITION PERFORMANCE EVALUATION WITH YOLOV8, ARCFACE, AND SVM IN A CONTACTLESS EMPLOYEE ATTENDANCE SYSTEM
DOI:
https://doi.org/10.34288/jri.v8i1.465Keywords:
Deep Learning, Face Recognition, Yolov8, ArcFace, Support Vector MachineAbstract
Manual attendance systems, which continue to be implemented in many institutions, are vulnerable to manipulation and require significant time. This research proposes an automated facial recognition attendance system optimized to address the unique challenges posed by CCTV cameras installed at a height of 3 meters. The system integrates three main components: YOLOv8m for face detection, ArcFace for 512-dimensional feature extraction, and a Support Vector Machine (SVM) with a Polynomial kernel for identity classification. The dataset (5 classes) was augmented using 20 augmentations per image and was split into a 70% training and 30% testing ratio. An image preprocessing pipeline, including CLAHE, denoising, and sharpening, was applied to enhance the input image quality. Experimental results demonstrate high classification performance, achieving 93.7% accuracy, 0.938 precision, 0.937 recall, and an F1-Score of 0.935. Confusion matrix and PCA analysis identified that the primary misclassification occurred between the E005_employee5 and E002_employee2 classes, correlating with feature overlap. Computationally, the system achieved a throughput of 7.2 FPS on the testing hardware. The system is proven to be accurate and functional for the attendance task, although its real-time performance (FPS) is highly dependent on hardware acceleration.
Downloads
References
Adelia, N., Munthe, A. A., & Masrizal. (2021). Sistem Informasi Reservasi Hotel Rantauprapat Berbasis Web Dengan Framework. Development Information System (JoSDIS), 1. https://doi.org/https://doi.org/10.36987/josdis.v1i1.2197
Adim, M. S., & Nurhidayat, A. I. (2023). Pembuatan Sistem Presensi Berbasis Pengenalan Wajah Dengan Metode You Only Look Once Version 8 (Studi Kasus: Event Organizer SHAF Management). https://ejournal.unesa.ac.id/index.php/jurnal-manajemen-informatika/article/view/63001/47815
Alzu’bi, A., Albalas, F., AL-Hadhrami, T., Younis, L. B., & Bashayreh, A. (2021). Masked Face Recognition Using Deep Learning: A Review. Electronics, 10(21), 2666. https://doi.org/10.3390/electronics10212666
Arishadilah, R. (2024). Perancangan Sistem Presensi Guru Berbasis Pengenalan Wajah Menggunakan Metode Klasifikasi Haar Cascade di MTS Al Fakhriyyah [Thesis]. UNIVERSITAS SATYA NEGARA INDONESIA.
Armiady, D. (2021). Absensi Kehadiran Menggunakan Kamera Pengawas Berbasis Teknologi Computer Vision. JURNAL TIKA, 6(02), 140–146. https://doi.org/10.51179/tika.v6i02.541
Dony, D., & Lubis, C. (2025). Deteksi YOLOv8 dan Pengenalan Wajah Menggunakan RESNET50 Pada Gereja. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 12(1). https://doi.org/10.35957/jatisi.v12i1.9757
Dumbere, M., Khan, R., Satpute, A., Pathan, S., & Ramteke, S. (2024). Smart CCTV (Face Recognition Attendance). IJARSCT, 4(4). https://doi.org/10.48175/IJARSCT-18331
Fan, Y., Luo, Y., & Chen, X. (2021). Research on Face Recognition Technology Based on Improved YOLO Deep Convolution Neural Network. Journal of Physics: Conference Series, 1982(1). https://doi.org/10.1088/1742-6596/1982/1/012010
Hasan, & Hardjianto, M. (2024). Pengenalan Wajah Secara Realtime Menggunakan Adaboost Viola-Jones dan 2D DWT-PCA dengan Struktur Index KNN-KD Tree. Decode: Jurnal Pendidikan Teknologi Informasi, 4(1), 154–166. https://doi.org/10.51454/decode.v4i1.300
Karakuş, S., Kaya, M., & Tuncer, S. A. (2023). Real-Time Detection and Identification of Suspects in Forensic Imagery Using Advanced YOLOv8 Object Recognition Models. Traitement Du Signal, 40(5), 2029–2039. https://doi.org/10.18280/ts.400521
Listyoningrum, K. I., Fenida, D. Y., & Hamidi, N. (2023). Inovasi Berkelanjutan dalam Bisnis: Manfaatkan Flowchart untuk Mengoptimalkan Nilai Limbah Perusahaan. Jurnal Informasi Pengabdian Masyarakat, 1(4), 100–112. https://doi.org/10.47861/jipm-nalanda.v1i4.552
Mahalwal, L., Gulati, J., Duhan, L., & Mishra, A. D. (2020). Smart Display Board With CCTV For Attendance. India International Journal of Technical Research. https://doi.org/10.30780/specialissue-ICACCG2020/0033
Marappan, S., Kuppuswamy, P., John, R., & Shanmugavadivu, N. (2021). Human Detection in Still Images Using Hog with SVM: A Novel Approach (pp. 385–397). https://doi.org/10.1007/978-3-030-65407-8_33
Mustafa Abdullah, D., & Mohsin Abdulazeez, A. (2021). Machine Learning Applications based on SVM Classification A Review. Qubahan Academic Journal, 1(2), 81–90. https://doi.org/10.48161/qaj.v1n2a50
Nawawi, M. (2023). Sistem Presensi Sekolah SMK Queen Al-Falah Menggunakan Face Recognition [Thesis, Universitas Nusantara PGRI Kediri]. https://repository.unpkediri.ac.id/12027/3/RAMA_55201_19103020098_0711018102_0729098903_01_front_ref.pdf
Nguyen, T.-A., Tran-Thi, T.-Q., Bui, D.-H., & Tran, X.-T. (2023). FPGA-Based Human Detection System using HOG-SVM Algorithm. 2023 International Conference on Advanced Technologies for Communications (ATC), 72–77. https://doi.org/10.1109/ATC58710.2023.10318871
Nurlita, B. W., Sri Winarno, Adhitya Nugraha, Almas Najiib Imam Muttaqin, Yasmin Zarifa, Pramesya Mutia Salsabila, & Ghina Fairuz Mumtaz7. (2024). Comparison of ArcFace and Dlib Performance in Face Recognition with Detection Using YOLOv8. INOVTEK Polbeng - Seri Informatika, 9(2), 890–903. https://doi.org/10.35314/3jy3dy73
Ren, Z., Liu, X., Xu, J., Zhang, Y., & Fang, M. (2025). LittleFaceNet: A Small-Sized Face Recognition Method Based on RetinaFace and AdaFace. Journal of Imaging, 11(1), 24. https://doi.org/10.3390/jimaging11010024
Romli, I. (2021). Penerapan Data Mining Menggunakan Algoritma K-Means Untuk Klasifikasi Penyakit Ispa. Indonesian Journal of Business Intelligence (IJUBI), 4(1), 10. https://doi.org/10.21927/ijubi.v4i1.1727
Sim, J. H., Ma’muriya, N., & Yulianto, A. (2024). Evaluating YOLOv5 and YOLOv8: Advancements in Human Detection. Journal of Information Systems and Informatics, 6(4), 2999–3015. https://doi.org/10.51519/journalisi.v6i4.944
Sydor, A., Balazh, D., Vitrovyi, Yu., Kapshii, O., Karpin, O., & Maksymyuk, T. (2024). Research On The State-Of-The-Art Deep Learning Based Models For Face Detection And Recognition. Information and Communication Technologies, Electronic Engineering, 4(2), 49–59. https://doi.org/10.23939/ictee2024.02.049
Terven, J., & Cordova-Esparza, D. (2023). A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. https://doi.org/10.3390/make5040083
Tofir, S., Leppang, I., & Hamzah, M. A. (2020). Perancangan Sistem Informasi Pada Dinas Pendidikan Kota Palopo Berbasis Web. Jurnal Health Sains, 1(6), 762–772. https://doi.org/10.46799/jsa.v1i6.107
Valero-Carreras, D., Alcaraz, J., & Landete, M. (2023). Comparing two SVM models through different metrics based on the confusion matrix. Computers and Operations Research, 152. https://doi.org/10.1016/j.cor.2022.106131
Walangitan, J., Sompie, S. R. U. A., & Najoan, X. B. N. (2024). Sistem Absensi Pengenalan Wajah Bermasker. Jurnal Teknik Informatika, 19(01), 21–30. https://doi.org/10.35793/jti.v19i01.51327
Yisihak, H. M., & Li, L. (2024). Advanced Face Detection with YOLOv8: Implementation and Integration into AI Modules. OALib, 11(11), 1–19. https://doi.org/10.4236/oalib.1112474
Yu, J., & Zhang, W. (2021). Face Mask Wearing Detection Algorithm Based on Improved YOLO-v4. Sensors, 21(9), 3263. https://doi.org/10.3390/s21093263
Yuan, Z., Shao, P., Li, J., Wang, Y., Zhu, Z., Qiu, W., Chen, B., Tang, Y., & Han, A. (2024). YOLOv8-ACU: improved YOLOv8-pose for facial acupoint detection. Frontiers in Neurorobotics, 18. https://doi.org/10.3389/fnbot.2024.1355857
Zhang, X., Xuan, C., Xue, J., Chen, B., & Ma, Y. (2023). LSR-YOLO: A High-Precision, Lightweight Model for Sheep Face Recognition on the Mobile End. Animals, 13(11). https://doi.org/10.3390/ani13111824
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Glanes Cindy Terampe, Arif Pramudwiatmoko

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.










