APPLICATION OF TRANSFER LEARNING ON EFFICIENTNET-B0 ARCHITECTURE FOR AUTOMATIC ROOF TILE DAMAG CLASSIFICATION

Authors

  • Rayhan Prasetya Ady Universitas Teknologi Yogyakarta
  • Arif Pramudwiatmoko
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v8i1.450

Keywords:

Image Classification, Deep Learning, Convulational Neural Network, EfficientNet-B0, Transfer Learning, Rooftiles Quality

Abstract

Subjectivity in manual quality control for traditional roof tiles poses a significant challenge, as the current process relies on manual, visual inspection and subjective judgment. This research proposes an automatic system to classify tile quality from images using a Convolutional Neural Network (CNN), specifically the EfficientNet-B0 model enhanced with transfer learning. The study utilized a primary dataset comprising 616 local roof tile images collected directly from producers in Berjo Kidul, Godean, Yogyakarta. These images were manually labeled based on producer criteria into three distinct classes: 'Finished' (203 images), 'Underbaked' (213 images), and 'Broken/Cracked' (200 images). The methodology involved resizing all images to 224x224 pixels and applying data augmentation, including random rotation, horizontal flipping, and color jitter, to mitigate overfitting. The EfficientNet-B0 model, pre-trained on ImageNet, was implemented in PyTorch and trained for 10 epochs using an 80/20 train/validation split with the Adam optimizer. The model demonstrated outstanding performance, reaching 99.70% accuracy in validation. Further evaluation confirmed this robustness; the model perfectly identified the 'Underbaked' class and recorded only a single misclassification error on the test set. Qualitative analysis via a Flutter mobile application showed the system is resilient to changes in background and viewing angles, although its accuracy is compromised by poor lighting and strong shadows. This study validates the proposed system as a highly efficient and objective tool for a more reliable quality control process.

Downloads

Download data is not yet available.

References

Achiruddin, Maghfirah, A., Sembiring, A. D., & Sofyan, H. D. (2019). The Fabrication of Roof Tiles Utilizing Palm Oil Boiler Ash and Used Rubber Thread Fibers Waste. Journal of Technomaterials Physics *Corresponding author at: Jl. Bioteknologi No.1 Kampus USU, 1(2), 102–109.

Alamsyah, R., Wiranata, A. D., & Rafie, R. (2019). Deteksi Cacat Ubin Keramik Dengan Metode K-Nearest Neighbor. Techno.Com, 18(3), 245–250. https://doi.org/10.33633/tc.v18i3.2459

Asyraf, H., & Prasetya, M. (2024). Implementasi Metode CRISP DM dan Algoritma Decision Tree Untuk Strategi Produksi Kerajinan Tangan pada UMKM A. Jurnal Media Informatika Budidarma, 8, 94. https://doi.org/10.30865/mib.v8i1.7050

Bahtiar, Y., Maulindar, J., & Yuliana, M. E. (2024). Prediksi Kualitas Genteng Mantili Berdasarkan Komposisi Bahan Baku Menggunakan Algoritma K-Nearest Neighbour. JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), 9(4), 2030–2041. https://doi.org/10.29100/jipi.v9i4.5589

Bai, K., Zhang, Z., Jin, S., & Dai, S. (2025). Rock image classification based on improved EfficientNet. Scientific Reports, 15(1), 18683–18697. https://doi.org/10.1038/s41598-025-03706-0

Fahriza, R., Setyadi, H. J., & Widagdo, P. P. (2024). Pengembangan Aplikasi Mobile E-Tourism Berbasis Flutter Untuk Dinas Pariwisata Kabupaten Kutai Kartanegara Menggunakan Metode Rapid Application Development. Kreatif Teknologi dan Sistem Informasi (KRETISI), 2(2), 23–28. https://doi.org/10.30872/kretisi.v2i2.1850

Rozi, M. I. F. R., Adiwijaya, N. O., & Swasono, D. I. (2023). Identifikasi Kinerja Arsitektur Transfer Learning Vgg16, Resnet-50, Dan Inception-V3 Dalam Pengklasifikasian Citra Penyakit Daun Tomat. Jurnal Riset Rekayasa Elektro, 5(2), 145. https://doi.org/10.30595/jrre.v5i2.18050

Hardirega, A., Jaelani, I., & Minarto. (2024). Implementasi Convulational Neural Network (CNN) Klasifikasi Motif Batik menggunakan Efficientnet-b1. Jurnal Mahasiswa Teknik Informatika, 8(5), 10024–11028. https://doi.org/https://doi.org/10.36040/jati.v8i5.10901

Hosna, A., Merry, E., Gyalmo, J., Alom, Z., Aung, Z., & Azim, M. A. (2022). Transfer Learning: a Friendly Introduction. Journal of Big Data, 9(1), 102. https://doi.org/10.1186/s40537-022-00652-w

Japara, E. M., & Arifin, S. (2023). Android application development using flutter framework: Creation of geolocation system module to validate user location coordinates. AIP Conference Proceedings, 2734(1), 1–9. https://doi.org/10.1063/5.0155337

Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2019). A Survey of the Recent Architectures of Deep Convolutional Neural Networks. Artificial Intelligence Review, 53(8), 5455–5516. https://doi.org/10.1007/s10462-020-09825-6

Mardiyah, M. I. (2020). Implementasi Deep Learning untuk Image Classification menggunakan Algoritma Convulational Neural Network (CNN) pada Citra Kebun dan Sawah [Skripsi, Universitas Islam Indonesia]. https://dspace.uii.ac.id/123456789/28083

Perdamaian, L. G., & Zhai, Z. (2024). Status of Livability in Indonesian Affordable Housing. Architecture, 4(2), 281–302. https://doi.org/10.3390/architecture4020017

Purwono, Ma’arif, A., Rahmaniar, W., Fathurrahman, H. I. K., Frisky, A. Z. K., & Haq, Q. M. U. (2022). Understanding of Convolutional Neural Network (CNN): A Review. International Journal of Robotics and Control Systems, 2(4), 739–748. https://doi.org/10.31763/ijrcs.v2i4.888

Putra, I. F. A., & Akbar, H. (2024). Pengembangan Aplikasi Mobile Klasifikasi Penyakit Kulit Berbasis EfficientNet-B0, Arsitektur MVVM dan CI/CD Pipeline. Jurnal Ilmiah Komputasi, 23(4), 579–586. https://doi.org/10.32409/jikstik.23.4.3676

Rahman, A., Salim, M., & Riadi, I. (2025). Klasifikasi Citra Spesies Bunga Di Indonesia Berbasis Convolutional Neural Network Menggunakan Teknik Transfer Learning. Jurnal Software Engineering and Computational Intelligence, 2(02), 92–100. https://doi.org/10.36982/jseci.v2i02.4942

Rhamadiyanti, D. T., & Kurini. (2024). Analisa Performa Convolutional Neural Network dalam Klasifikasi Citra Apel dengan Data Augmentasi. Kajian Ilmiah Informatika dan Komputer, 5(1), 154–162. https://doi.org/DOI 10.30865/klik.v5i1.2023

Saputra, H. A., Sunarsih, E. S., & Siswanto, B. (2023). Analisis Karakteristik Genteng Keramik Hasil Campuran Limbah Abu Ampas Tebu dan Abu Terbang Batubara sebagai Pengganti Sebagian Tanah Lempung. Indonesian Journal Of Civil Engineering Education, 8(2), 27. https://doi.org/10.20961/ijcee.v8i2.70876

Shearer, C. (2000). The CRISP-DM Model: The New Blueprint for Data Mining. Journal of Data Warehousing, 5(4), 13–22. https://www.dw-institute.com

Suyanto. (2022). Machine Learning Tingkat Dasar dan Lanjut (2nd ed.). Penerbit Informatika Bandung.

Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Proceedings of the 36th International Conference on Machine Learning, 2–8. https://doi.org/10.48550

Xia, X., & Zhou, S. (2022). Performance Comparison between Pytorch and Mindspore. International Journal of Database Management Systems, 14(02), 14–2. https://doi.org/10.5121/ijdms.2022.14201

Xu, J., Zeng, F., Liu, W., & Takahashi, T. (2022). Damage Detection and Level Classification of Roof Damage after Typhoon Faxai Based on Aerial Photos and Deep Learning. Applied Sciences, 12(10), 4912. https://doi.org/10.3390/app12104912

Zakaria, A. D., Eviyanti, A., Maulina, M. I., & Azinar, W. A. (2024). Classification of Ceramic Roof Tiles Using the CNN Method [Skripsi, UMSIDA]. https://doi.org/10.21070/ups.5804

Zhang, Y., Kong, L., Antwi-Afari, M. F., & Zhang, Q. (2024). An Integrated Method Using a Convolutional Autoencoder, Thresholding Techniques, and a Residual Network for Anomaly Detection on Heritage Roof Surfaces. Buildings, 14(9), 2828–2849. https://doi.org/10.3390/buildings14092828

Downloads

Published

2025-12-15

How to Cite

Ady, R. P., & Pramudwiatmoko, A. (2025). APPLICATION OF TRANSFER LEARNING ON EFFICIENTNET-B0 ARCHITECTURE FOR AUTOMATIC ROOF TILE DAMAG CLASSIFICATION. Jurnal Riset Informatika, 8(1), 63–73. https://doi.org/10.34288/jri.v8i1.450