IMPLEMENTATION OF A GAME RECOMMENDATION SYSTEM USING THE K-MEANS CLUSTERING AND CONTENT-BASED FILTERING METHODS

Authors

  • Rianggi Silvi Anti Universitas Nusa Mandiri
  • Nanang Ruhyana* Universitas Nusa Mandiri
  • Syarah Seimahura Universitas Nusa Mandiri
  • Andri Agung Riyadi Universitas Nusa Mandiri
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v8i1.444

Keywords:

K-Means Clustering, Hybrid Recommendation, Content-based Filtering, Game, System Recommendation

Abstract

This study focuses on developing a web-based game recommendation system using a hybrid approach, combining K-Means Clustering and Content-Based Filtering to improve the accuracy and relevance of recommendations. The dataset was taken from the RAWG API, consisting of 1,000 games with key attributes such as name, Genre, platform, rating, and age category (ESRB). The research stages included Data Preparation, exploratory analysis, attribute transformation, application of K-Means for game segmentation, and similarity calculation using Cosine Similarity. The hybrid approach was carried out by filtering recommendations based on the same cluster. The results show that the integration of the two methods produces more relevant recommendations, with UMAP and t-SNE visualizations showing clear cluster separation. The system was implemented using Django and deployed on Google Cloud Platform, resulting in an efficient, adaptive, and real-time recommendation application.

Downloads

Download data is not yet available.

References

Agustina, N., Citra, D. H., Purnama, W., Nisa, C., & Kurnia, A. R. (2022). Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Ulasan Shopee pada Google Play Store. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 2(1), 47–54.

Chythanya N*, K., Bhargavi Y, K., & Rohan, B. (2019). A Novel Video Game Recommender System using Content Based Filtering -Vidya. International Journal of Recent Technology and Engineering (IJRTE), 8(4), 536–541.

Dihni, V. A. (2022). Jumlah Gamers Indonesia Terbanyak Ketiga di Dunia. Databoks. Diakses Tanggal 18 Agustus 2025 from https://databoks.katadata.co.id/teknologi-telekomunikasi/statistik/950b8ba78451f97/jumlah-gamers-indonesia-terbanyak-ketiga-di-dunia

Fitri, E. M., Suryono, R. R., & Wantoro, A. (2023). Klasterisasi Data Penjualan Berdasarkan Wilayah Menggunakan Metode K-Means Pada Pt Xyz. Jurnal Komputasi, 11(2), 157–168.

Liu, K., Ma, J., Feng, S., Zhang, H., & Zhang, Z. (2023). DRGame: Diversified Recommendation for Multi-category Video Games with Balanced Implicit Preferences.

Meidl, M., Lytinen, S., & Raison, K. (n.d.). Using Game Reviews to Recommend Games. www.aaai.org

Nurdy, A. H., Rahim, A., & Arbansyah. (2024). Analisis Sentimen Ulasan Game Stumble Guys Pada Playstore Menggunakan Algoritma Naïve Bayes. Teknika, 13(3), 388–395.

Pragusma, Z. B., Kwandinata, V., Natthannael, J., Meiliana, & Achmad, S. (2023). Game Recommendation Using Content-based Algorithm Title. 2023 International Conference on Informatics, Multimedia, Cyber and Information Systems, ICIMCIS 2023, 313–317.

Rochmad Wahono, A., Aji Saputra, B., & Fadlu Rahman, F. (2024). Sistem Rekomendasi Film Menggunakan Metode Content-Based Filtering dan Algoritma K-Nearest Neighbors (KNN). Prosiding Seminar Nasional Teknologi Informasi Dan Bisnis, 1–6.

Safitri, J., Atina, V., & Sudibyo, N. A. (2024). Rancang bangun sistem rekomendasi pemilihan drama korea dengan metode content-based filtering Design of a korean drama selection recommendation system using the content-based filtering method. 5, 175–189.

Viggiato, M., Lin, D., Hindle, A., & Bezemer, P. (n.d.). What Causes Wrong Sentiment Classifications of Game Reviews? https://github.com/asgaardlab/sentiment-analysis-Steam

Viljanen, M., Vahlo, J., Koponen, A., & Pahikkala, T. (2020). Content Based Player and Game Interaction Model for Game Recommendation in the Cold Start setting.

Wang, C., Wei, X., Jiang, Y., Ong, F., Gao, K., Yu, X., Hui, Z., Yoon, S., Yu, P., & Gong, M. (2025). Solving the Content Gap in Roblox Game Recommendations: LLM-Based Profile Generation and Reranking.

Wang, Y., Chu, C., & Li, K. (2024). Research on Game Recommendation Algorithms Based on Hybrid Models. ACM International Conference Proceeding Series, 267–274.

Widaraeni, F. S., & Vivianti. (2021). Tematik : Jurnal Teknologi Informasi Komunikasi (e-Journal) Vol. 8 No. 2 Desember 2021. Tematik : Jurnal Teknologi Informasi Komunikasi (e-Journal), 8(2), 160–175.

Widya, A., Gaffar, M., & Samsul, S. W. (2025). Sistem Rekomendasi Pemilihan Hardware Komputer Menggunakan Metode Item-Based Collaborative Filtering. 14(April), 284–292.

Yuan, L., Ding, M., Meng, F., & Tian, Y. (2025). Sentiment Analysis and Rating Video Game Dimensions via NLP.

Yudhistira, A., & Andika, R. (2023). Pengelompokan Data Nilai Siswa Menggunakan Metode K-Means Clustering. Journal of Artificial Intelligence and Technology Information (JAITI), 1(1), 20–28.

Downloads

Published

2025-12-15

How to Cite

Silvi Anti, R., Ruhyana*, N., Seimahura, S., & Agung Riyadi, A. (2025). IMPLEMENTATION OF A GAME RECOMMENDATION SYSTEM USING THE K-MEANS CLUSTERING AND CONTENT-BASED FILTERING METHODS. Jurnal Riset Informatika, 8(1), 158–170. https://doi.org/10.34288/jri.v8i1.444