ANALYSIS OF CONTENT MANAGEMENT SYSTEM DEVELOPMENT FOR TAMAN MINI ONLINE TICKETING LANDING PAGE

Authors

  • Sahid Triambudhi Politeknik Negeri Indramayu
  • Ihsan Doni Irawan Politeknik Negeri Indramayu
  • Faisal Yusuf Fadhilah Politeknik Negeri Indramayu
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v8i1.435

Keywords:

Taman Mini, Content Management System, Online Ticket, Booking System, Venue Attraction, Tempat Wisata, Pariwisata, Tiket Online

Abstract

Taman Mini Indonesia Indah (TMII), an iconic Indonesian cultural theme park focusing on education and recreation, exhibits high promotional and event dynamics post-revitalization, necessitating its online ticket sales landing page (tiket.tamanmini.com) to present updated information rapidly. Despite having an efficient booking system for transaction management, TMII's main landing page faces a serious operational constraint: every addition of a new ticket (ticket ID), modification, or creation of a new menu section must be executed via manual source code modification (hard code). This practice causes significant inefficiency, delays in publishing promotional tickets (e.g., school holiday bundles), and high risks of errors, directly impacting business revenue potential. This research aims to conduct a comprehensive needs analysis for designing a dedicated Content Management System (CMS) module for TMII's ticket sales landing page, thereby eliminating the reliance on hard coding. The methodology employed is qualitative descriptive, using observation and interviews with the website and operational management teams for data collection. The primary result of this analysis is a detailed specification of the functional and non-functional requirements for the CMS module, including independent CRUD (Create, Read, Update, Delete) capabilities for tickets and banners. The CMS design is expected to significantly enhance the operational efficiency of the management team, ensure content accuracy, and accelerate business response to market opportunities, ultimately making content management for online tickets independent and efficient.

Downloads

Download data is not yet available.

References

B, V., & Gangula, R. (2024). Exploring the Power and Practical Applications of K-Nearest Neighbours (KNN) in Machine Learning. Journal of Computer Allied Intelligence, 2(1), 8–15. https://doi.org/10.69996/jcai.2024002

Daulay, R. S. A., Efendi, S., & Suherman. (2023). Review of Literature on Improving the KNN Algorithm. Transactions on Machine Learning and Artificial Intelligence, 11(3), 63–72. https://doi.org/10.14738/tecs.113.14768

Dewan, J., Gele, A., Fulari, O., Kabade, B., & Joshi, A. (2022). Fish Detection and Classification. 2022 6th International Conference on Computing, Communication, Control and Automation (ICCUBEA, 1–5. https://doi.org/10.1109/ICCUBEA54992.2022.10010836

Dhabliya, D., Thangarasu, N., Reddy, B., Nirmala, D., Parmar, Y., & Ganesan, S. (2024). Feature Extraction Techniques in Document Image Analysis an Analysis. 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–6. https://doi.org/10.1109/ICCCNT61001.2024.10724751

Fajri, F. N., Dzikrillah, M., & Khairi, A. (2024). Digital Fish Image Segmentation Using U-Net for Shape Feature Extraction. JURNAL TEKNOLOGI DAN OPEN SOURCE, 7(2), 195–201. https://doi.org/10.36378/jtos.v7i2.3968

Iman, Y. D. Al, Isnanto, R. R., & Nurhayati, O. D. (2023). Klasifikasi Jenis Ikan Laut K-Nearest Neighbor Berdasarkan Ekstraksi Ciri 2-Dimensional Linear Discriminant Analysis. Jurnal Teknologi Informasi Dan Ilmu Komputer, 10(4), 919–926. https://doi.org/10.25126/jtiik.20241046787

Jannah, M., Nababan, A. A., & Ningsi, Y. S. (2023). Penerapan Metode K-Nearest Neighbor dalam Identifikasi Jenis Ikan Salmon yang Dapat Dikomsumsi Untuk Bahan Mpasi Bayi. J-SISKO TECH (Jurnal Teknologi Sistem Informasi Dan Sistem Komputer TGD), 6(2), 636. https://doi.org/10.53513/jsk.v6i2.8716

Khan, M. A., Jamil, S. A., Vellanki, S., Latha, M., Singh, K. U., & Batra, M. (2024). Creation of Machine Learning-Based Fish Classification Systems Based on Morphometric and Mathematical Transform Data. J. Electrical Systems, 20(5), 2325–2332.

Khatami, A. M., Yonvitner, & Setyobudiandi, I. (2019). Karakteristik Biologi dan Laju Eksploitasi Ikan Pelagis Kecil di Perairan Utara Jawa. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 11(3), 637–651. https://doi.org/10.29244/jitkt.v11i3.19159

Kusuma, F. H., Ms, A. U., Ibadillah, A. F., Nahari, V., Joni, K., & Saputro, A. K. (2023). Sistem Identifikasi Kesegaran dan Jenis Ikan dengan Metode K-Nearest Neighbor Berdasarkan Citra Mata dan Bentuk Ikan. Jurnal FORTECH, 4(1), 33–41. https://doi.org/10.56795/fortech.v4i1.383

Li, G. (2024). Machine learning. In Chemical Theory and Multiscale Simulation in Biomolecules (pp. 51–80). Elsevier. https://doi.org/10.1016/B978-0-323-95917-9.00004-3

Mubarok, M. I., Sulistyowati, B. I., Perangin-angin, R., & Nurlaela, E. (2023). Composition of The Catch of Mini Purse Seine in The Java Sea. Coastal and Marine Journal, 1(1), 23–28. https://doi.org/10.61548/cmj.v1i1.5

Nuraini, R., Wibowo, A., Warsito, B., Syafei, W. A., & Jaya, I. (2023). Combination of K-NN and PCA Algorithms on Image Classification of Fish Species. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(5), 1026–1032. https://doi.org/10.29207/resti.v7i5.5178

Nuralam, M. M., Hernawati, D., & Agustian, D. (2023). Keanekaragaman dan Potensi Jenis Ikan Hasil Tangkapan Nelayan di Tempat Pelelangan Ikan (TPI) Pamayangsari Kabupaten Tasikmalaya. Jurnal Biosilampari: Jurnal Biologi, 5(2), 154–162. https://doi.org/10.31540/biosilampari.v5i2.2000

Oktaviani, D., Prianto, E., & Nugroho, D. (2020). Length-Weight, Maturity, and Condition Factor of Torpedo Scads (Megalaspis cordyla Linnaeus, 1758) in the Java Sea, Indonesia. Biodiversitas, 21(4), 1527–1534. https://doi.org/10.13057/biodiv/d210433

P, R. K. (2024). Role of Digital Image Processing in Education and Medical Field. IOSR Journal of Computer Engineering, 26(5), 01–08. https://doi.org/10.9790/0661-2605030108

Patel, D. (2024). Computer Vision and Image Segmentation. International Journal for Research in Applied Science and Engineering Technology, 12(2), 915–925. https://doi.org/10.22214/ijraset.2024.58479

Regulwar, G. B., Mahalle, A., Pawar, R., Shamkuwar, S. K., Kakde, P. R., & Tiwari, S. (2024). Big Data Collection, Filtering, and Extraction of Features. In D. Darwish (Ed.), Big Data Analytics Techniques for Market Intelligence (pp. 136–158). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-0413-6.ch005

Suwarsito, Mustafidah, H., Pinandita, T., & Purnomo. (2022). Freshwater Fish Classification Based on Image Representation Using K-Nearest Neighbor Method. JUITA: Jurnal Informatika, 10(2), 183.

Zheng, T., Wu, J., Kong, H., Zhao, H., Qu, B., Liu, L., Yu, H., & Zhou, C. (2024). A video object segmentation-based fish individual recognition method for underwater complex environments. Ecological Informatics, 82(1), 102689. https://doi.org/https://doi.org/10.1016/j.ecoinf.2024.102689

Downloads

Published

2025-12-15

How to Cite

Sahid Triambudhi, Ihsan Doni Irawan, & Faisal Yusuf Fadhilah. (2025). ANALYSIS OF CONTENT MANAGEMENT SYSTEM DEVELOPMENT FOR TAMAN MINI ONLINE TICKETING LANDING PAGE. Jurnal Riset Informatika, 8(1), 1–10. https://doi.org/10.34288/jri.v8i1.435