BITCOIN PRICE VOLATILITY ANALYSIS: A DEEP LEARNING APPROACH TO X (FORMERLY TWITTER) SENTIMENT
DOI:
https://doi.org/10.34288/jri.v8i1.432Keywords:
Bitcoin, X Sentiment, Volatility, Pearson Correlation, Deep LearningAbstract
This study investigates the relationship between social media sentiment and Bitcoin price volatility using advanced natural language processing techniques. We collected X data from April 10-29, 2025, analyzing cryptocurrency-related tweets alongside Bitcoin price movements obtained through the CoinGecko API. Five sentiment analysis methodologies were comparatively evaluated: VADER, TextBlob, BERTweet, RoBERTa Base, and RoBERTa Large. Bitcoin price volatility was measured using log returns to capture market fluctuations accurately. Correlation analysis revealed significant differences in methodological effectiveness. Traditional lexicon-based approaches (VADER and TextBlob) demonstrated weak correlations with volatility (r = -0.2232 and r = -0.0710 respectively). Transformer-based models showed superior performance, with RoBERTa Large achieving the strongest correlation (r = 0.4569, p = 0.0428), representing the only statistically significant relationship. The positive correlation indicates that increased social media sentiment corresponds to higher Bitcoin price volatility rather than directional price movements. These findings demonstrate that sophisticated deep learning models can effectively capture sentiment-driven market dynamics, providing valuable insights for cryptocurrency investors, trading platforms, and market analysts seeking to understand social media influence on digital asset markets.
Downloads
References
Adams, T., Ajello, A., Silva, D., & Vazquez-Grande, F. (2023). More than Words: Twitter Chatter and Financial Market Sentiment. Finance and Economics Discussion Series, 2023–034, 1–36. https://doi.org/10.17016/feds.2023.034
Alghamdi, S., Alqethami, S., Alsubait, T., & Alhakami, H. (2022). Cryptocurrency Price Prediction using Forecasting and Sentiment Analysis. International Journal of Advanced Computer Science and Applications, 13(10). https://doi.org/10.14569/IJACSA.2022.01310105
Al-Qablan, T. A., Mohd Noor, M. H., Al-Betar, M. A., & Khader, A. T. (2023). A survey on sentiment analysis and its applications. Neural Computing and Applications, 35(29), 21567–21601. https://doi.org/10.1007/s00521-023-08941-y
Aysan, A. F., Caporin, M., & Cepni, O. (2024). Not all words are equal: Sentiment and jumps in the cryptocurrency market. Journal of International Financial Markets, Institutions and Money, 91, 101920. https://doi.org/10.1016/j.intfin.2023.101920
Bansal, S., Singh, B. K., & Jain, M. K. (2025). An Analysis of Different Sentiment Analysis Models on Financial Text using Transformer (pp. 83–99). https://doi.org/10.2991/978-94-6463-852-3_6
Bhatt, S., Ghazanfar, M., & Amirhosseini, M. H. (2023). Sentiment-Driven Cryptocurrency Price Prediction: A Machine Learning Approach Utilizing Historical Data and Social Media Sentiment Analysis. Machine Learning and Applications: An International Journal, 10(2/3), 01–15. https://doi.org/10.5121/mlaij.2023.10301
GB, H., & B, S. N. (2023). Cryptocurrency Price Prediction using Twitter Sentiment Analysis. https://doi.org/10.5121/csit.2023.130302
Ghazouani, I., Ghazouani, I., & Omri, A. (2025). Virtual influence, real impact: Deciphering social media sentiment and its effects on cryptocurrency market dynamics. Blockchain: Research and Applications, 100375. https://doi.org/10.1016/j.bcra.2025.100375
Gunasekaran, K. P. (2023). Exploring Sentiment Analysis Techniques in Natural Language Processing: A Comprehensive Review. https://doi.org/10.17148/IJARCCE.2019.8126
Hardiyanto, R., & Husodo, Z. A. (2025a). Synergy Analysis on Cryptocurrency Returns and Investor Sentiment Using Bidirectional Encoder Representations from Transformers (BERT). Indonesian Journal of Artificial Intelligence and Data Mining, 8(2), 300. https://doi.org/10.24014/ijaidm.v8i2.33315
Hardiyanto, R., & Husodo, Z. A. (2025b). Synergy Analysis on Cryptocurrency Returns and Investor Sentiment Using Bidirectional Encoder Representations from Transformers (BERT). Indonesian Journal of Artificial Intelligence and Data Mining, 8(2), 300. https://doi.org/10.24014/ijaidm.v8i2.33315
Hidayatullah, M., & Juniar, A. (2024a). Narrative Research Study: Market Sentiment As A Trigger For Cryptocurrency Volatility. SENTRALISASI, 14(1), 261–292. https://doi.org/10.33506/sl.v14i1.3900
Hidayatullah, M., & Juniar, A. (2024b). Narrative Research Study: Market Sentiment As A Trigger For Cryptocurrency Volatility. SENTRALISASI, 14(1), 261–292. https://doi.org/10.33506/sl.v14i1.3900
Hidayatullah, M., & Juniar, A. (2024c). Narrative Research Study: Market Sentiment As A Trigger For Cryptocurrency Volatility. SENTRALISASI, 14(1), 261–292. https://doi.org/10.33506/sl.v14i1.3900
I Gusti Ngurah Agung Dananjaya, Made Aristia Prayudi, & I Gd Nandra Hary Wiguna. (2025). The Influence of Retail Investor Activity and Sentiment on Social Media on Stock Market Dynamics in Bali. E-Jurnal Akuntansi, 35(7). https://doi.org/10.24843/EJA.2025.v35.i07.p19
Kraaijeveld, O., & De Smedt, J. (2020a). The predictive power of public Twitter sentiment for forecasting cryptocurrency prices. Journal of International Financial Markets, Institutions and Money, 65, 101188. https://doi.org/10.1016/j.intfin.2020.101188
Kraaijeveld, O., & De Smedt, J. (2020b). The predictive power of public Twitter sentiment for forecasting cryptocurrency prices. Journal of International Financial Markets, Institutions and Money, 65, 101188. https://doi.org/10.1016/j.intfin.2020.101188
Mattera, R., & Franses, P. H. (2025). Forecasting house price growth rates with factor models and spatio-temporal clustering. International Journal of Forecasting, 41(1), 398–417. https://doi.org/10.1016/j.ijforecast.2024.09.003
Mjoska, M., Ristevski, B., Savoska, S., & Trajkovik, V. (2022). Predicting Bitcoin Volatility Using Machine Learning Algorithms and Blockchain Technology. https://ceur-ws.org/Vol-3191/paper30.pdf
Nguyen, D. Q., Vu, T., & Tuan Nguyen, A. (2020). BERTweet: A pre-trained language model for English Tweets. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, 9–14. https://doi.org/10.18653/v1/2020.emnlp-demos.2
Nugraha, D., & Astuti, P. (2023). Analisis Sentimen Cyberbullying Pada Sosial Media Instagram Menggunakan Metode Support Vector Machine. INFORMATION SYSTEM FOR EDUCATORS AND PROFESSIONALS : Journal of Information System, 8(2), 153. https://doi.org/10.51211/isbi.v8i2.2535
Pan, R., García-Díaz, J. A., Garcia-Sanchez, F., & Valencia-García, R. (2023). Evaluation of transformer models for financial targeted sentiment analysis in Spanish. PeerJ Computer Science, 9, e1377. https://doi.org/10.7717/peerj-cs.1377
Semary, N. A., Ahmed, W., Amin, K., Pławiak, P., & Hammad, M. (2023). Improving sentiment classification using a RoBERTa-based hybrid model. Frontiers in Human Neuroscience, 17. https://doi.org/10.3389/fnhum.2023.1292010
Todd, A., Bowden, J., & Moshfeghi, Y. (2024). Text‐based sentiment analysis in finance: Synthesising the existing literature and exploring future directions. Intelligent Systems in Accounting, Finance and Management, 31(1). https://doi.org/10.1002/isaf.1549
Ünvan, Y. (2024). A study on bitcoin price behaviour with analysis of daily bitcoin price data. Facta Universitatis - Series: Electronics and Energetics, 37(1), 229–247. https://doi.org/10.2298/FUEE2401229U
Zhao, C., Kang, L., Xi, X., Du, S., & Li, J. (2025). Investor sentiment and stock market volatility: Exploring the relationship using sentiment analysis of stock bar comments. Finance Research Open, 1(3), 100016. https://doi.org/10.1016/j.finr.2025.100016
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Puji Astuti, Rangga Sidiq Endrasmoyo, Syawalluddin, Yesi Fitria, Pungkas Budiyono

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.










