Analysis Of Public Sentiment Towards Naturalized Players In The Indonesian National Team Using The Naïve Bayes Method

Authors

  • T. Raihan Yudisthira Universitas Islam Negeri Sumatera Utara
  • Abdul Halim Hasugian Universitas Islam Negeri Sumatera Utara
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v7i4.398

Keywords:

Naïve Bayes, Naturalization, Sentiment, Confusion Matrix

Abstract

The increasing number of naturalized Indonesian national team players in the Garuda squad has triggered various reactions and opinions among the public, both pro and con. This study aims to identify and classify these sentiments, whether positive, negative, or neutral. The method used in this study is to use Naive Bayes because of its excellent ability to classify text based on the probability of word occurrence. In order to obtain more accurate results, several preprocessing stages need to be carried out through several steps, namely cleaning, case folding, normalization, stopword removal, tokenizing, and stemming on the data to be processed for maximum results from each stage. The results of the study showed that the majority of public sentiment tends to be more neutral towards the contribution of naturalized Indonesian national team players. To determine the percentage of results from the specified classification, a Confusion Matrix will be used. The results of the classification process using the Naive Bayes method produce data into 3 types, namely 33 positive classes, 357 neutral classes, and 13 negative classes with an accuracy value of 89%, precision 63%, recall 34%, and f1-score 33%. This sentiment analysis provides an overview of public comments regarding the presence of naturalized Indonesian national team players regarding public acceptance of the naturalization policy and can be input for PSSI in making decisions regarding the development of the national team in the future in order to improve the quality of the national team in the future

Downloads

Download data is not yet available.

References

Abimanyu, Arsenio Jusuf, Mahendra Dwifebri, and Widi Astuti. 2023. “Sentiment Analysis on Movie Review from Rotten Tomatoes Using Logistic Regression and Information Gain Feature Selection.” Building of Informatics, Technology and Science (BITS) 5(1). doi: 10.47065/bits.v5i1.3595.

Atha Anastasya, Talitha, Agatha Diani Putri Saka, Milen Juventus Dappa Deke, and Agung Mustika Rizki. 2024. “Optimasi Algoritma Svm Dengan Pso Untuk Analisis Sentimen Pada Media Sosial X Terhadap Kinerja Timnas Di Era Shin Tae-Yong.” JATI (Jurnal Mahasiswa Teknik Informatika) 9(1):384–91. doi: 10.36040/jati.v9i1.12298.

Azhar, Muhamad, Noor Hafidz, Biktra Rudianto, and Windu Gata. 2020. “Marketplace Sentiment Analysis Using Naive Bayes And Support Vector Machine.” PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic 8(2):91–100. doi: 10.33558/piksel.v8i2.2272.

Fakhrezi, Muhamad Fahmi, Adian Fatchur Rochim, and Dinar Mutiara Kusomo Nugraheni. 2023. “Comparison of Sentiment Analysis Methods Based on Accuracy Value Case Study: Twitter Mentions of Academic Article.” Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi) 7(1):161–67. doi: 10.29207/resti.v7i1.4767.

Al Fath, Miftahul Kahfi, Arini Arini, and Nasrul Hakiem. 2020. “Sentiment Analysis Of Full Day School Policy Comment Using Naïve Bayes Classifier Algorithm.” SinkrOn 5(1):107–14. doi: 10.33395/sinkron.v5i1.10564.

Helena, Cherlina, and Purnamasari Panjaitan. 2025. “Systematic Literature Review of Sentiment Analysis on Various Review Platforms in the Tourism Sector.” 2(1):12–18.

Jafar Sidiq, Soleh, and Andi Nur Rachman. 2023. “Analysis Of Twitter User Sentiment To Tiktok Shop Using Naïve Bayes And Decision Tree Algorithms.” International Journal of Applied Information Systems and Informatics (JAISI) 1(1):8–14. doi: 10.37058/jaisi.v1i1.8990.

Manullang, Oktaviami, and Cahyo Prianto. 2023. “Analisis Sentimen Dalam Memprediksi Hasil Pemilu Presiden Dan Wakil Presiden : Systematic Literature Review.” Jurnal Informatika Dan Teknologi Komputer ( J-ICOM) 4(2):104–13. doi: 10.55377/j-icom.v4i2.7723.

Ningrum, Ariska Fitriyana. 2024. “Sentiment Analysis of Public Opinion on Handling Stunting in Indonesia Using Random Forest.” Jurnal Statistika Dan Aplikasinya 8(1):31–40. doi: 10.21009/jsa.08103.

Nugraha, Mohamad Rizki, Mahendra Dwifebri Purbolaksono, and Widi Astuti. 2023. “Sentiment Analysis on Movie Review from Rotten Tomatoes Using Modified Balanced Random Forest Method and Word2Vec.” Building of Informatics, Technology and Science (BITS) 5(1):153–61. doi: 10.47065/bits.v5i1.3596.

Prakoso, Quina Alifa Nanda, Anita Muliawati, and Ika Nurlaili Isnainiyah. 2022. “Analisis Sentimen Terhadap Produk Skin Game Di Forum Review Female Daily Menggunakan Metode Multinomial Naïve Bayes Dan TF-IDF.” Informatik : Jurnal Ilmu Komputer 18(3):198. doi: 10.52958/iftk.v18i3.4679.

Prasetyo, Vera Puteri, and Kota Cimahi. n.d. “PLATFORM MENGENAI PRO KONTRA TERHADAP NATURALISASI INDONESIA.” 13(3).

Pravina, Arsya Monica. 2022. “Sentiment Analysis of Delivery Service Opinions on Twitter Documents Using K-Nearest Neighbor.” JATISI (Jurnal Teknik Informatika Dan Sistem Informasi) 9(2):996–1012. doi: 10.35957/jatisi.v9i2.1899.

Rahman, Sayuti, Arnes Sembiring, Dodi Siregar, Husnul Khair, I. Gusti Prahmana, Ratih Puspadini, and Muhammad Zen. 2023. Python : Dasar Dan Pemrograman Berorientasi Objek.

Sari, Putri Ratna, Dwi Rosa Indah, Errissya Rasywir, Ghita Athalina, Sistem Informasi, Fakultas Ilmu Komputer, Universitas Sriwijaya, Fakultas Ilmu Komputer, Universitas Dinamika, and Bangsa Jambi. 2024. “Comparison of Naive Bayes and SVM Algorithms for Sentiment Analysis of PUBG Mobile on Google Play Store.” 13:2767–79.

Sholeha, Eka Wahyu, Selviana Yunita, Rifqi Hammad, Veny Cahya Hardita, and Kaharuddin Kaharuddin. 2022. “Analisis Sentimen Pada Agen Perjalanan Online Menggunakan Naïve Bayes Dan K-Nearest Neighbor.” JTIM : Jurnal Teknologi Informasi Dan Multimedia 3(4):203–8. doi: 10.35746/jtim.v3i4.178.

Sri Rahayu, Dwi, Rice Novita, Tengku Khairil Ahsyar, and Zarnelly. 2024. “Sentiment Analysis ChatGPT Using the Multinominal Naïve Bayes Classifier (NBC) Algorithm.” Jurnal Sistem Cerdas 7(1):66–74. doi: 10.37396/jsc.v7i1.388.

Styawati, Styawati, Auliya Rahman Isnain, Nirwana Hendrastuty, and Lili Andraini. 2021. “Comparison of Support Vector Machine and Naïve Bayes on Twitter Data Sentiment Analysis.” Jurnal Informatika: Jurnal Pengembangan IT 6(1):56–60. doi: 10.30591/jpit.v6i1.3245.

Sudirjo, Frans, Karno Diantoro, Jassim Ahmad Al-Gasawneh, Hizbul Khootimah Azzaakiyyah, and Abu Muna Almaududi Ausat. 2023. “Application of ChatGPT in Improving Customer Sentiment Analysis for Businesses.” Jurnal Teknologi Dan Sistem Informasi Bisnis 5(3):283–88. doi: 10.47233/jteksis.v5i3.871.

Tanggu Mara, Andry, Eko Sediyono, and Hindriyanto Purnomo. 2021. “Penerapan Algoritma K-Nearest Neighbors Pada Analisis Sentimen Metode Pembelajaran Dalam Jaringan (DARING) Di Universitas Kristen Wira Wacana Sumba.” Jointer - Journal of Informatics Engineering 2(01):24–31. doi: 10.53682/jointer.v2i01.30.

Downloads

Published

2025-09-12

How to Cite

T. Raihan Yudisthira, & Abdul Halim Hasugian. (2025). Analysis Of Public Sentiment Towards Naturalized Players In The Indonesian National Team Using The Naïve Bayes Method. Jurnal Riset Informatika, 7(4), 299–306. https://doi.org/10.34288/jri.v7i4.398