Classification Of Kredivo Application Reviews Based On User Satisfaction Aspects With The SVM Method

Authors

  • Haprilianh Hasanah Universitas Buana Perjuangan Karawang
  • Tukino Universitas Buana Perjuangan Karawang
  • Shofa Shofia Hilabi Universitas Buana Perjuangan Karawang
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v7i4.390

Keywords:

Text Classification, Kredivo, Support Vector Machine (SVM), Sentiment Analysis

Abstract

The development of the fintech sector in Indonesia has encouraged the creation of various digital payment applications, one of which is Kredivo which provides instant credit and installments without a credit card. In this study, we analyzed and classified Kredivo application user reviews based on satisfaction attributes using the Support Vector Machine (SVM) method. Review data was collected from the Google Play Store and pre-processed using text preprocessing, InSet dictionary-based sentiment tagging, TF-IDF feature extraction, and training-test data splitting in an 80:20 ratio. Based on the analysis, most Kredivo user reviews were observed to have positive sentiment of 38.70%, negative sentiment of 26.90%, and neutral of 34.40%. The SVM model developed for Kredivo review sentiment labeling works with positive, negative, and neutral. Word cloud visualization recognizes the most important words with positive tones such as "mantap", "baik", "cepat", "mudah", and "transaksi", as well as the most important words with negative tones such as "hapus", "bayar", "bulan", "meminjam", and "tidak". The results of this study can be feedback for Kredivo developers and other fintech platforms to improve services based on user needs and demands, as well as strengthen business strategies according to customer satisfaction levels.

Downloads

Download data is not yet available.

References

Adrianto, Indra, Intan Miraka Lailya, and Eman Sulaeman. 2023. “Pengaruh Brand Positioning Terhadap Keputusan Penggunaan Aplikasi Fintech Lending Kredivo.” Jurnal Ilmiah Wahana Pendidikan 9(4):221–35.

Ahmad, Kiki. 2023. “Analisis Sentimen Pinjaman Online Akulaku Dan Kredivo Dengan Metode Support Vector Machine (SVM).” Journal of Mandalika Literature 4(4):323–32. doi:10.36312/jml.v4i4.2045.

Awalullaili, Fithroh Oktavi, Dwi Ispriyanti, and Tatik Widiharih. 2023. “Klasifikasi Penyakit Hipertensi Menggunakan Metode Svm Grid Search Dan Svm Genetic Algorithm (Ga).” Jurnal Gaussian 11(4):488–98. doi:10.14710/j.gauss.11.4.488-498.

Eldo, Handry, Ayuliana Ayuliana, Dikky Suryadi, Giatika Chrisnawati, and Loso Judijanto. 2024. “Penggunaan Algoritma Support Vector Machine (SVM) Untuk Deteksi Penipuan Pada Transaksi Online.” Jurnal Minfo Polgan 13(2):1627–32. doi:10.33395/jmp.v13i2.14186.

Huda, B., & Tukino, T. 2019. “Keputusan Dalam Pemilihan Tema Tugas Akhir Pada Prodi Sistem Informasi Universitas Buana Perjuangan Karawang. Techno Xplore: Jurnal Ilmu Komputer Dan Teknologi.” Jurnal Ilmu Komputer & Teknologi Informasi 4(1):28–37.

Iqbal, Muhammad, M. Afdal, and Rice Novita. 2024. “Implementasi Algoritma Support Vector Machine Untuk Analisa Sentimen Data Ulasan Aplikasi Pinjaman Online Di Google Play Store.” MALCOM: Indonesian Journal of Machine Learning and Computer Science 4(4):1244–52. doi:10.57152/malcom.v4i4.1435.

Judijanto, Loso, Rina Destiana, Eko Sudarmanto, Ida Ayu Putri Suprapti, and Iwan Harsono. 2024. “Analisis Pengaruh Adopsi Teknologi Finansial, Kepercayaan Nasabah, Dan Regulasi Terhadap Penggunaan Layanan Keuangan Digital.” Jurnal Akuntansi Dan Keuangan West Science 3(01):20–28. doi:10.58812/jakws.v3i01.906.

Maharani, H. H., and D. Darna. 2024. “Analisis Keputusan Penggunaan PayLater Kredivo Dalam Perspektif Ekonomi Islam.” Seminar Nasional Akuntansi Dan … 3. https://prosiding.pnj.ac.id/SNAM/article/view/3199%0Ahttps://prosiding.pnj.ac.id/SNAM/article/download/3199/1813.

Mulyani, Vellia, and Syarif Hidayatulloh. 2023. “Analisis Usability Sistem Aplikasi Kredit Digital Dengan Pendekatan Use Questionnaire Dan IPA.” Jurnal Sistem Informasi Stmik Antar Bangsa 12(1):10–16.

Nuraeni, Ani, Adhitia Erfina, and Dede Sukmawan. 2023. SENTIMENT ANALYSIS OF INDONESIAN PEOPLE’S RESPONSE AGAINST THE PAYLATER PAYMENT METHOD USING THE NAIVE BAYES ALGORITHM. Vol. 3.

Pitria, Putri Ayu, Arista Pratama, and Asif Faroqi. 2024. “Evaluasi Pengaruh Trust Dan Risk Terhadap Minat Peminjam Menggunakan Kredivo Dengan TAM Modifikasi.” INFORMASI (Jurnal Informatika Dan Sistem Informasi) 16(2):197–216. doi:10.37424/informasi.v16i2.311.

Prayogo, Anang, Fauziah Fauziah, and Winarsih Winarsih. 2023. “Perbandingan Algoritma Naïve Bayes Dan K-Nearest Neighbor Pada Klasifikasi Judul Artikel Pada Jurnal Ilmiah.” JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika) 8(4):1327–38. doi:10.29100/jipi.v8i4.4141.

Ristiana, Nanda, and Emy Widyastuti. 2022. “Analisis Pengaruh Literasi Keuangan Digital Terhadap Minat Mahasiswa Dalam Penggunaan Layanan E-Banking.” Jurnal Masharif Al-Syariah: Jurnal Ekonomi Dan Perbankan Syariah 7(1):425–44.

Sulistiani, Vina Alipah, and Muhammad Hamka. 2024. “Analisis Sentimen Pengguna Media Sosial Terhadap Identitas Kependudukan Digital Menggunakan Metode Support Vector Machine (SVM).” Journal of Information System Research (JOSH) 5(4):1323–32. doi:10.47065/josh.v5i4.5614.

Sunani, Sunani, and Rini Hendriani. 2023. “Classification and Pharmacological Activities of Bioactive Tannins.” Indonesian Journal of Biological Pharmacy 3(2):130–36. https://jurnal.unpad.ac.id/ijbp.

Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani. 2023. “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes Dan KNN.” Jurnal KomtekInfo 10:1–7. doi:10.35134/komtekinfo.v10i1.330.

Wahyudi, Rizki, Gilang Kusumawardhana, Amikom Purwokerto, Jl Letjend, Pol Soemarto, Kec Purwanegara, Tim Purwokerto, and Kabupaten Banyumas. 2021. “Analisis Sentimen Pada Review Aplikasi Grab Di Google Play Store Menggunakan Support Vector Machine.” JURNAL INFORMATIKA 8(2). http://ejournal.bsi.ac.id/ejurnal/index.php/ji.

Yosifanti, Arsya Kurnia, and Abdul Yusuf. 2022. “Pengaruh Omnichannel Perceived Value Dan Omnichannel Integration Quality Terhadap Custemer Loyality Pada Pengguna Aplikasi Kredivo.” J-MAS (Jurnal Manajemen Dan Sains) 7(2):1223. doi:10.33087/jmas.v7i2.550.

Yudha, Anung Ronggo, Achmad Busro, and Ery Agus Priyono. 2022. “Perbandingan Kontrak Utang Piutang Konvensional Dengan Kontrak Elektronik Kredivo.” Diponegoro Law Journal 11(2):1–16. https://ejournal3.undip.ac.id/index.php/dlr

Downloads

Published

2025-09-12

How to Cite

Hasanah, H., Tukino, & Shofa Shofia Hilabi. (2025). Classification Of Kredivo Application Reviews Based On User Satisfaction Aspects With The SVM Method. Jurnal Riset Informatika, 7(4), 367–374. https://doi.org/10.34288/jri.v7i4.390

Most read articles by the same author(s)