Forecasting The Highest Number Of Hotel Visitors In Mojokerto Regency Using Arima Model

Authors

  • Gading Putri Diniarti Universitas Pembangunan Nasional "Veteran" Jawa Timur
  • Rizka Hadiwiyanti
  • Prasasti Karunia F. A
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v7i4.388

Keywords:

time series forecasting, hotel visitor prediction, MSE, RMSE, MAPE, auto ARIMA

Abstract

This study aims to forecast the number of hotel visitors in Mojokerto Regency using the Autoregressive Integrated Moving Average (ARIMA) model based on monthly data from 2022 to 2024 provided by the Department of Culture, Youth, Sports, and Tourism (Disbudporapar). The research focuses on three hotels with the highest number of visitors: Hotel Grand Whiz, Puri Indah Hotel, and Hotel Arrayana. The implementation was carried out using Python via the Google Colab platform, involving several analytical stages including data stationarity testing (ADF), differencing, identification of ARIMA parameters (p, d, q) using ACF and PACF plots, automatic model estimation with auto ARIMA, and residual diagnostics. Model performance was evaluated using MSE, RMSE, and MAPE. The results show that ARIMA performed best on Puri Indah Hotel data with a MAPE of 9.65%, indicating high accuracy, while performance was lowest for Hotel Arrayana with a MAPE of 32.31%. Visualization of the predictions revealed that ARIMA works effectively for stable patterns but is less adaptive to volatile trends. The implementation of ARIMA proves to be a useful tool in supporting data-driven decision-making for tourism planning and hotel operational strategy in Mojokerto Regency

Downloads

Download data is not yet available.

References

As, M., Wibowo, S. S., & Sophia, E. (2017). PERAMALAN JUMLAH MAHASISWA BARU DENGAN MODEL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE ( ARIMA ). 2(3), 20–33.

Cherrly, A., & Somya, R. (2023). Prediksi Penjualan Tiket Wisata Taman Bermain Menggunakan Metode ARIMA. Techno.Com, 22(2), 312–322. https://doi.org/10.33633/tc.v22i2.7950

Dar, A. A., Jain, A., Malhotra, M., Farooqi, A. R., Albalawi, O., Khan, M. S., & Hiba. (2024). Time Series analysis with ARIMA for historical stock data and future projections. Soft Computing, 1-12.

Dewi, M. S., & Sutarman, S. (2022). Estimasi Parameter Model Arch Menggunakan Metode Bayes. Journal of Fundamental Mathematics and Applications (JFMA), 5(2), 162–175. https://doi.org/10.14710/jfma.v5i2.15029

Fazrina, N. A., Wijaya, D. R., Hadie, B. A., & Budiwati, S. D. (2024). Poverty Level Prediction Based on Time Series Data using Auto Arima. BIO Web of Conferences, 144. https://doi.org/10.1051/bioconf/202414404008

Febiola, A., Dewi, A., Fazarin, F. M., Ramadhani, F., Khaffi, M. A., Akbar, R., & Dalimunthe, D. Y. (2024). Perbandingan Metode ARIMA dan SARIMA Dalam Peramalan Jumlah Penumpang Bandara Provinsi Kepulauan Bangka Belitung. Jambura Journal of Mathematics, 6(2), 160–168. https://doi.org/10.37905/jjom.v6i2.25081

Firdaus, M., Studi, P., & Informatika, T. (2024). PERBANDINGAN MODEL ARIMA MANUAL DAN AUTO DALAM. 9(2), 147–155.

Insti, S. L. (2024). Development of an ARIMA Model to Predict the Monthly Price of Bitcoin in USD. July 2021.

Jumlah, P., Wisatawan, K., …… M., Cristanto, M., & Mailoa, E. (2023). Peramalan Jumlah Kedatangan Wisatawan Mancanegara dengan Menggunakan Model ARIMA.

Mazlan, N., Izham, S. S. B., & Ahmadun, M. B. (2023). Muslim Friendly Hotels As Islamic Tourism Products: Issues and Challenges. International Journal of Academic Research in Business and Social Sciences, 13(2), 241–255. https://doi.org/10.6007/ijarbss/v13-i2/16344

Pariwisata, D., Olahraga, K. D. A. N., & Pengantar, K. (2020). Dinas pariwisata, kepemudaan dan olahraga kabupaten mojokerto. 1–53.

Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., Ben Taieb, S., Bergmeir, C., Bessa, R. J., Bijak, J., Boylan, J. E., Browell, J., Carnevale, C., Castle, J. L., Cirillo, P., Clements, M. P., Cordeiro, C., Cyrino Oliveira, F. L., De Baets, S., Dokumentov, A., … Ziel, F. (2022). Forecasting: theory and practice. International Journal of Forecasting, 38(3), 705–871. https://doi.org/10.1016/j.ijforecast.2021.11.001

Pipit Muliyah, Dyah Aminatun, Sukma Septian Nasution, Tommy Hastomo, Setiana Sri Wahyuni Sitepu, T. (2020). 済無No Title No Title No Title. Journal GEEJ, 7(2).

Pratama, I. G. S. (2020). The impact of tourism development on the economic, cultural and environmental aspects of local communities. International Research Journal of Management, IT and Social Sciences, 7(1), 31–36. https://doi.org/10.21744/irjmis.v7n1.819

Rizkya, D., Roosaputri, H., & Dewi, C. (2023). Perbandingan Algoritma ARIMA, Prophet, dan LSTM dalam Prediksi Penjualan Tiket Wisata Taman Hiburan (Studi Kasus: Saloka Theme Park). Jurnal Penerapan Sistem Infomatika (Komputer & Manajemen), 4(3), 507–517.

Si, Y. (2022). Using ARIMA model to analyse and predict bitcoin price. DCP Business and Management, (34), 1210-1216.

Suhendra, C. D., Marini, L. F., & Sarungallo, A. (2023). Prediksi Mahasiswa Baru Universitas Papua Menggunakan Autoregressive Integrated Moving Average. Jurnal Informatika, 10(2), 163–172. https://doi.org/10.31294/inf.v10i2.16637

Umam, K. (2023). MIND (Multimedia Artificial Intelligent Networking Database Perbandingan Metode ARIMA dan LSTM pada Prediksi Jumlah Pengunjung Perpustakaan. Journal MIND Journal | ISSN, 8(2), 119–129. https://doi.org/10.26760/mindjournal.v8i2.119-129

Vaibhava Lakshmi, R., & Radha, S. (2021). Time series forecasting for the adobe software company’s stock prices using ARIMA (BOX-JENKIN’) model. Journal of Physics: Conference Series, 2115(1). https://doi.org/10.1088/1742-6596/2115/1/012044

Vean, A. C., & Witanti, A. (2024). Prediksi Kurs Rupiah Terhadap Euro Dan Pound Menggunakan Arima. Dinamika Rekayasa, 20(1), 39–47. https://doi.org/10.20884/1.dinarek.2024.20.1.24

Wahyu ngestisari. (2020). The Perbandingan Metode ARIMA dan Jaringan Syaraf Tiruan untuk Peramalan Harga Beras. Indonesian Journal of Data and Science, 1(3), 96–107. https://doi.org/10.33096/ijodas.v1i3.18

Downloads

Published

2025-09-12

How to Cite

Gading Putri Diniarti, Rizka Hadiwiyanti, & Prasasti Karunia F. A. (2025). Forecasting The Highest Number Of Hotel Visitors In Mojokerto Regency Using Arima Model. Jurnal Riset Informatika, 7(4), 289–298. https://doi.org/10.34288/jri.v7i4.388