BANDWIDTH MODELING ON SMART CAMPUS BASED ON ENGINEERING METHOD – STATISTICS
Abstract
The importance of generating internet traffic as one of the basic considerations in bandwidth allocation policies between faculties is increasing due to the number of students who complain about connection services on campus. This study proposes internet traffic generation based on the statistical - engineering method. The population is calculated based on class capacity in each faculty, as the main alibi of student attendance on campus where traffic arrivals are generated based on the arrival model through information on possible scheduling variations. Although internet services have different characteristics, they are physically determined by the bitrate and idle mode in the traffic time series. The results show recommendations in three application bitrate categories, namely 200kbps, 400kbps, and 800kbps Traffic Shaping.
Downloads
References
Adeyemi, O. J., Popoola, S. I., Atayero, A. A., Afolayan, D. G., Ariyo, M., & Adetiba, E. (2018). Exploration of daily Internet data traffic generated in a smart university campus. Data in Brief, 20, 30–52. https://doi.org/10.1016/j.dib.2018.07.039
Alam, T., Alharbi, Y. M., Abusallama, F. A., & Hakeem, A. O. (2020). Smart Campus Mobile Application Toward the Development of Smart Cities. International Journal of Applied Sciences and Smart Technologies, 2(1), 75–88. https://doi.org/10.2139/ssrn.3638973
Anggrawan, A., Satria, C., & Husain, H. (2018). Smart Campus: Model Baru Enterprise Architecture STMIK Bumigora Mataram dalam Manajement Tata Kelola TIK Berbasis TOGAF ADM. Jurnal Mantik Penusa, 2(2), 127–136. https://e-jurnal.pelitanusantara.ac.id/index.php/mantik/article/view/476
Feng, S., Wong, Y. K., Wong, L. Y., & Hossain, L. (2019). The Internet and Facebook Usage on Academic Distraction of College Students. Computers and Education, 134, 41–49. https://doi.org/10.1016/j.compedu.2019.02.005
Herianto, H., & Vega, H. (2021). Implementasi Neural Network Untuk Membangun Model Prediksi Kebutuhan Bandwidth Dan Spesifikasi. Jurnal Sains & Teknologi Fakultas Teknik, 11(3), 56–64. http://repository.unsada.ac.id/2361/1/06-Herianto- Jurnal-Implementasi Neural Network Untuk Membangun Model Prediksi Kebutuhan Bandwidth Dan Spesifikasi.pdf
Herwin, H., & Andesa, K. (2021). Penerapan Manajemen Bandwidth Berdasarkan PPPoE Pada Pondok Pesantren Miftahul Huda. SATIN-Sains Dan Teknologi Informasi, 7(2), 121–128. http://register.stmik-amik-riau.ac.id/index.php/satin/article/view/778
Mahmood, I., Quair-tul-ain, Nasir, H. A., Javed, F., & Aguado, J. A. (2020). A hierarchical multi-resolution agent-based modeling and simulation framework for household electricity demand profile. Simulation, 96(8), 655–678. https://doi.org/10.1177/0037549720923401
Markelov, O., Nguyen Duc, V., & Bogachev, M. (2017). Statistical modeling of the Internet traffic dynamics: To which extent do we need long-term correlations? Physica A: Statistical Mechanics and Its Applications, 485(1), 48–60.
Marnerides, A. K., Pezaros, D. P., & Hutchison, D. (2018). Internet traffic characterisation: Third-order statistics & higher-order spectra for precise traffic modelling. Computer Networks, 134, 183–201. https://doi.org/10.1016/j.comnet.2018.01.050
Shiraki, H., Nakamura, S., Ashina, S., & Honjo, K. (2016). Estimating the hourly electricity profile of Japanese households – Coupling of engineering and statistical methods. Energy, 114(1), 478–491. https://doi.org/10.1016/j.energy.2016.08.019
Sihotang, J. I. (2019). Pemodelan Background Traffic Pada Jaringan Berkapasitas Terbatas. TeIKa, 9(1), 53–62. https://jurnal.unai.edu/index.php/teika/article/view/785
Singichetti, B., Conklin, J. L., Hassmiller Lich, K., Sabounchi, N. S., & Naumann, R. B. (2021). Congestion Pricing Policies and Safety Implications: a Scoping Review. Journal of Urban Health, 98(6), 754–771. https://doi.org/10.1007/s11524-021-00578-3
Tampubolon, J. A., Suhada, S., Safii, M., Poningsih, P., & Efendi, B. (2022). Optimasi Bandwidth Menggunakan Metode Peer Connection pada Dinas Lingkungan Hidup Pematangsiantar. Jurnal Ilmu Komputer Dan Teknologi, 2(2), 27–32. https://doi.org/10.35960/ikomti.v2i2.705
Wohn, D. Y., & Ahmadi, M. (2019). Motivations and habits of micro-news consumption on mobile social media. Telematics and Informatics, 44, 101262. https://doi.org/10.1016/j.tele.2019.101262
Yadav, S. K., & Akhter, Y. (2021). Statistical Modeling for the Prediction of Infectious Disease Dissemination With Special Reference to COVID-19 Spread. Frontiers in Public Health, 9(June), 1–27. https://doi.org/10.3389/fpubh.2021.645405


Copyright (c) 2022 Ewi Ismaredah, Hasdi Radiles

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Jurnal Riset Informatika agrees to the following terms:
- The author retains the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-NonCommercial 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- The author is permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).
Read more about the Creative Commons Attribution-NonCommercial 4.0 Licence here: https://creativecommons.org/licenses/by-nc/4.0/.