CLASSIFICATION OF THE POOR IN INDONESIA USING NAIVE BAYES ALGORITHM AND NAIVE BAYES ALGORITHM BASED ON PSO

  • Endang Sri Palupi (1*) Universitas Bina Sarana Informatika

  • (*) Corresponding Author
Keywords: classification, naïve bayes, particle swarm optimization

Abstract

The poverty rate in Indonesia is still quite high, due to the large population and uneven development and economic centre. With a large population and an archipelagic country that stretches from west to east, it is not easy for the government to level the economy in order to reduce poverty in Indonesia. This study was conducted to classify the poverty rate in districts on the island of Sumatra and Java using Nave Bayes and Nave Bayes based on Particle Swarm Optimization. Thus, it is hoped that the central government and local governments can monitor the implementation of programs in order to reduce poverty rates, especially in districts with high poverty rates. Based on research conducted on the classification of the poor in districts on the island of Sumatra and Java with confusion matrix testing and validation techniques using the Naïve Bayes algorithm, the accuracy rate is 59.75% and AUC 0.768 is included in the good classification. While the results of the classification using the Naïve Bayes algorithm based on Particle Swarm Optimization produces an accuracy rate of 82.93% and an AUC of 0.849 is included in the good classification. From the results of this study, it can be said that Al-Qur'an Naïve Bayes is a good technique for classification in data mining, and for maximum results using Particle Swarm Optimization.

Downloads

Download data is not yet available.

References

Ahmad. (2021). Faktor Penyebab Kemiskinan dan Dampaknya. Retrieved July 11, 2022, from Gramedia Blog website: https://www.gramedia.com/literasi/penyebab-kemiskinan/

Annur, H. (2018). Klasifikasi Masyarakat Miskin Menggunakan Metode Naive Bayes. ILKOM Jurnal Ilmiah, 10(2), 160–165. https://doi.org/10.33096/ilkom.v10i2.303.160-165

Aprilia, K., & Sembiring, F. (2021). Analisis Garis Kemiskinan Makanan Menggunakan Metode Algoritma K-Means Clustering. Seminar Nasional Sistem Informasi Dan Manajemen Informatika, 1–10. Sukabumi: Universitas Nusa Putra. Retrieved from https://sismatik.nusaputra.ac.id/index.php/sismatik/article/view/1

Astuti, F. D. (2017). Penerapan Data Mining Untuk Clustering Data Penduduk Miskin Menggunakan Algoritma Hard C-Means. Data Manajemen Dan Teknologi Informasi, 18(1), 64–69. Retrieved from https://ojs.amikom.ac.id/index.php/dasi/article/view/1836

Effendy, F., & Purbandini, P. (2018). Klasifikasi Rumah Tangga Miskin Menggunakan Ordinal Class Classifier. Jurnal Nasional Teknologi Dan Sistem Informasi, 4(1), 30–36. https://doi.org/10.25077/teknosi.v4i1.2018.30-36

Faid, M., Jasri, M., & Rahmawati, T. (2019). Perbandingan Kinerja Tool Data Mining Weka dan Rapidminer Dalam Algoritma Klasifikasi. Teknika, 8(1), 11–16. https://doi.org/10.34148/teknika.v8i1.95

Hu, X., Eberhart, R. C., & Shi, Y. (2003). Particle Swarm With Extended Memory For Multiobjective Optimization. Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No.03EX706). Indianapolis: IEEE. https://doi.org/10.1109/SIS.2003.1202267

Isa, I. G. T., Elfaladonna, F., & Ariyanti, I. (2022). Buku Ajar Sistem Pendukung Keputusan. Pekalongan: Penerbit NEM.

Larose, D. T., & Larose, C. D. (2014). Discovering Knowledge in Data: An Introduction to Data Mining (4th ed.). New Jersey: John Wiley & Sons.

Sari, Y. R., Sudewa, A., Lestari, D. A., & Jaya, T. I. (2020). Penerapan Algoritma K-Means Untuk Clustering Data Kemiskinan Provinsi Banten Menggunakan Rapidminer. CESS (Journal of Computer Engineering, System and Science), 5(2), 192. https://doi.org/10.24114/cess.v5i2.18519

Simarnata, Y. P. H. (2019). Analisis Pengaruh Kemiskinan, Pengangguran, Dan Ketimpangan Pendapatan Terhadap Indeks Pembangunan Manusia (IPM) Di Indonesia (Universitas Sumatera Utara). Universitas Sumatera Utara. Retrieved from https://repositori.usu.ac.id/handle/123456789/15100

Sugiyono. (2018). Metode Penelitian Kuantitatif, Kualitatif dan R&D. Bandung: Alfabeta.

Tandika, B. (2022). 5 Aplikasi Data Mining Favorit Para Spesialis. Retrieved July 7, 2022, from Glints website: https://glints.com/id/lowongan/aplikasi-data-mining/#.YtJQtXZBzIV

Usama M. Fayyad, Piatetsky-Shapiro, G., Smyth, P., & Uthurusamy, R. (1996). Advances in Knowledge Discovery and Data Mining. (MIT Press, Ed.). Massachusetts.

Wanto, A. (2020). Data Mining : Algoritma dan Implementasi. Medan: Yayasan Kita Menulis.

Wicaksono, A., & Padilah, T. N. (2021). Pengaruh Jumlah Record Dataset Terhadap Algoritma Klasifikasi Berdasarkan Data Customer Churn. Jurnal Ilmiah Informatika, 6(1), 11–19. Retrieved from https://journal.ibrahimy.ac.id/index.php/JIMI/article/view/1223

Published
2022-06-20
How to Cite
Palupi, E. (2022). CLASSIFICATION OF THE POOR IN INDONESIA USING NAIVE BAYES ALGORITHM AND NAIVE BAYES ALGORITHM BASED ON PSO. Jurnal Riset Informatika, 4(3), 241-246. https://doi.org/10.34288/jri.v4i3.382
Article Metrics

Abstract viewed = 8 times
PDF downloaded = 9 times