IMPLEMENTATION OF DATA MINING ON MUSLIM WOMEN'S CLOTHING SALES USING THE FP-GROWTH METHOD
DOI:
https://doi.org/10.34288/jri.v7i3.382Keywords:
FP-Growth, Purchasing Patterns, Operational EfficiencyAbstract
The Muslim women's fashion industry in Indonesia is growing rapidly, leading to intense competition and requiring business owners to optimize their sales strategies and inventory management. This study aims to identify consumer purchasing patterns at TM Collection Store by applying the FP-Growth data mining method. The data used consists of 1,000 sales transactions from January to April 2024. Data collection was conducted through historical data observation, interviews, and literature review, followed by processing using the FP-Growth algorithm in Google Colab. The analysis results reveal strong associations between products, such as the combination of Paris Premium, shirt cuffs XL, and shirt cuffs L, which show high confidence values and significant lift. These patterns provide valuable insights for decision-making related to restocking and promotional strategies. The findings also help improve operational efficiency by more accurately predicting customer demand. Therefore, the implementation of the FP-Growth algorithm proves effective in processing transaction data to generate relevant information and support more targeted business decisions. This data-driven strategy offers an innovative solution to enhance competitiveness in the continuously growing Muslim women's fashion industry.
Downloads
References
Aditiya, R., Defit, S., & Nurcahyo, G. W. (2020). Prediksi Tingkat Ketersediaan Stock Sembako Menggunakan Algoritma FP-Growth dalam Meningkatkan Penjualan. Jurnal Informatika Ekonomi Bisnis, 2, 67–73. https://doi.org/10.37034/infeb.v2i3.44
Aktavera, B., Oktafia, H., Wijaya, L., Studi, P., Komputer, I., Petulai, U. P., Lebong, R., Studi, P., Informasi, S., Insan, U. B., Apriori, A., & Apriori, A. (2024). Analisis Association Rule Menggunakan Algoritma Apriori dan Algoritma FP Growth. Jurnal Teknologi Informasi Mura, 16(1), 54–61.
Alam, F. N., Setyawan, P. A., & Dwianto, S. (2024). Prediksi ketersediaan stok bulanan kategori susu di toko koperasi menggunakan metode decision tree. November, 25–34.
Anas, A. (2020). Penerapan Algoritma Fp-Growth Dalam Menentukan Perilaku Konsumen Ghania Mart Muara Bulian. Jurnal Ilmiah Media Sisfo, 14(2), 120–129.
Andriyanti, R., Rahaningsih, N., & Ali, I. (2025). STUDI MODEL ASOSIASI PADA PENJUALAN KOPI BERBASIS ALGORITMA FP-GROWTH. 9(1), 5113–5119.
Atmaja, G. bayu, & Rachman, R. (2025). PERBANDINGAN ALGORITMA APRIORI DAN FP-GROWTH PADA ANALISIS PERILAKU KONSUMEN TERHADAP PEMBELIAN DATA ELEKTRONIK. 298–307.
Destiawati, D., Rahaningsih, N., Bahtiar, A., Ali, I., & Dienwati Nuris, N. (2024). Analisis Pola Penjualan Menggunakan Algoritma Asosiasi Fp-Growth Di Pt Abc. JATI (Jurnal Mahasiswa Teknik Informatika), 8(3), 3405–3410. https://doi.org/10.36040/jati.v8i3.9719
Dwi Insani, F., & Al Fatta, H. (2023). Perbandingan Algoritma Apriori Dan Fp-Growth Untuk Rekomendasi Item Paket Pada Konten Promosi Di Perusahaan Mu-Mart. Jurnal Bisnis Digital Dan Sistem Informasi, 4(2), 19–24.
Febiyanto, A., Faqih, A., Herdiyana, R., Dienwati Nuris, N., & Narasati, R. (2024). Penerapan Algoritma Fp-Growth Untuk Menenntukan Pola Penjualan Produk Elektronik. JATI (Jurnal Mahasiswa Teknik Informatika), 7(6), 3907–3912. https://doi.org/10.36040/jati.v7i6.8286
Hafizh, M., Novita, T., Guswandi, D., Syahputra, H., & Mayola, L. (2023). Implementasi Data Mining Menggunakan Algoritma Fp-Growth Untuk Menganalisa Transaksi Penjualan Ekspor Online. Jurnal Teknologi Dan Sistem Informasi Bisnis, 5(3), 242–249. https://doi.org/10.47233/jteksis.v5i3.847
Helyatin, A. H., Nadzirotul, N., Syarif, F., Khoiri, A., & Fauzen, M. (2024). JUSTIFY : Jurnal Sistem Informasi Ibrahimy PERANCANGAN SISTEM INFORMASI PRESENSI GURU BERBASIS WEB. 3(1), 21–29. https://doi.org/10.35316/justify.v3i1.5565
Irawan, Y. P., Gema, R. L., Elva, Y., & Komputer, F. I. (2024). Optimasi persediaan produk penjualan menggunakan metode economic order quantity. 8(1), 153–162.
Jawara, I. R., Fatah, Z., Ibrahimy, U., Timur, S. J., Ibrahimy, U., & Timur, S. J. (2025). PENGGUNAAN DATA MINING UNTUK MEMPREDIKSI PENJUALAN PADA TOKO. 2(1), 52–60.
Nugroho, B. I., Ma’arif, Z., & Arif, Z. (2022). Tinjauan Pustaka Sistematis: Penerapan Data Mining Metode Klasifikasi Untuk Menganalisa Penyalahgunaan Sosial Media. Jurnal Sistem Informasi Dan …, 3(2), 46–51. http://journal.peradaban.ac.id/index.php/jsitp/article/download/1265/860
Ramdani, F., & Utami, I. Q. (2022). Pengantar Data Science.
Srisusilawati, P., Prasetyo, S. N., Nur Hamidah, S. A., Rihhadatull ’Aisy, R. A., & Oktavia, R. (2024). Tren dan Perkembangan Fashion Syariah Pada Era Modern di Kota Bandung. Jurnal Ilmiah Ekonomi Islam, 10(1), 953. https://doi.org/10.29040/jiei.v10i1.12319
Sudarmi, Awaluddin, M., Syam, A., & Mahmuddin. (2024). Tren Fashion Syariah dalam Digitalisasi Marketing di Era Milineal dan Gen Z. Economic Reviews Journal, 3(3), 2172–2178. https://doi.org/10.56709/mrj.v3i3.329
Sugianto, C. A., & Sukmawati, D. (2023). Penerapan Algoritma FP-Growth Untuk Mengetahui Pola Pada Data Transaksi Percetakan (Studi Kasus Java Printing Batujajar). Journal of Information Technology, 5(1), 20–26.
Suhada, S., Ratag, D., Gunawan, G., Wintana, D., & Hidayatulloh, T. (2020). Penerapan algoritma fp-growth untuk menentukan pola pembelian konsumen pada ahass cibadak. Jurnal Khatulistiwa Informatika, 8(2), 118–126.
Valencia, S., & Atmojo, W. T. (2024). Analisis Pola Pembelian pada Data Penjualan CanNgopi menggunakan Algoritma FP-Growth. 8(2), 214–224.
Winarti, D., Kom, M., Revita, E., & Kom, M. (2021). Penerapan Data Mining untuk Analisa Tingkat Kriminalitas Dengan Algoritma Association Rule Metode FP-Growth. Jurnal SIMTIKA, 4(3), 8–22.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Riko Aldinata, Raissa Amanda Putri

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.










