KNOWLEDGE-BASED HIJAB PRODUCT SELECTION RECOMMENDATION SYSTEM AT CANDY SCARVES
DOI:
https://doi.org/10.34288/jri.v7i3.377Keywords:
Sistem rekomendasi, pemilihan, hijab, knowledge based recommendation, rapid application developmentAbstract
The primary objective of this study is to construct a knowledge-driven hijab product selection recommendation system for Candy Scarves. This system is designed to help customers find hijabs that match their criteria by utilizing customer characteristics and product attributes. The study uses a knowledge-based recommendation approach supported by case-based techniques. The construction of the system is orchestrated through the application of the Rapid Application Development (RAD) paradigm, encompassing a sequence of iterative stages—ranging from requirement formulation and architectural design to accelerated prototyping and eventual deployment—thus privileging adaptability and user-centered refinement over linear progression. Data modeling using sample data totaling 25 hijab products and 6 attributes. The system provides recommendations based on criteria for hijab models, materials, hijab colors, skin colors, motifs, and prices. The empirical findings reveal that the hijab item exhibiting the utmost degree of similarity is the Umama Hijab with voal material, mocha hijab color, brown skin color, and plain motifs with a result of 0.90303. The results of this analysis are able to provide personal recommendations effectively and have the potential to increase customer satisfaction and product sales.
Downloads
References
mavicius, G., & Tuzhilin, A. (2020). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749. Https://doi.org/10.1109/TKDE.2005.99
Alkahfi, M. A., Ayuni, P., Rorizki, F., Batubara, M., Silalahi, P., Syariah, A., Ekonomi, F., & Islam, B. (2022). Strategi Promosi Digital Online Shop Aisar.Scarf dalam Meningkatkan Penjualan Produk Hijab. 3, 466. Http://dx.doi.org/10.47467/elmal.v3i3.930
Aryanti, R., Fitriani, E., Ardiansyah, D., & Saepudin, A. (2021). Penerapan Metode Rapid Application Development Dalam Pengembangan Sistem Informasi Akademik Berbasis Web. Paradigma - Jurnal Komputer Dan Informatika, 23(2). Https://doi.org/10.31294/p.v23i2.11170
Atina, V., & Hartanti, D. (2022). KNOWLEDGE BASED RECOMMENDATION MODELING FOR CLOTHING PRODUCT SELECTION RECOMMENDATION SYSTEM. Jurnal Teknik Informatika (Jutif), 3(5), 1407–1413. Https://doi.org/10.20884/1.jutif.2022.3.5.584
Burke, R. (2021). Knowledge-based recommender systems. In Encyclopedia of Library and Information Systems (Vols. 69, Suppl. 32, pp. 180–200). CRC Press.
Fariha Aswarina, D., Febiana Ovianti, I., Kusuma Dewi, C., & Ximenes Soares, S. (n.d.). Implementasi Knowledge Based Recommendation dalam Prototype Sistem Rekomendasi di Toko Intradivila Hijab. 18–2024.
Hanafi, A. I., Srirahayu, A., & Farida, A. (2024). Sistem Rekomendasi Produk Konveksi Pada Deem Clothing Dengan Metode Knowledge Based. SMATIKA JURNAL, 14(02), 270–283. Https://doi.org/10.32664/smatika.v14i02.1338
Ismail, S., & Fauzi, A. (2020). Consumer behavior and product choice in hijab fashion. International Journal of Islamic Business, 5(1), 35–42.
Kotler, P., & Keller, K. L. (2021). Marketing management (16th ed.). Pearson Education.
Kurniawan, I., & Yuliana, A. (n.d.). Analisis Customer Preference dalam Memilih Hijab (Studi pada Produk Hijab Rumah Anita Jombang) Analysis of Customer Preferences in Choosing Hijab (Study on Hijab Products of Rumah Anita Jombang). Https://doi.org/10.33059/jseb.v16i1.9033
Nasution, M. D. T. P. (2022). Kajian tren penggunaan hijab dan pertumbuhan bisnis fashion Muslim di Indonesia. Jurnal Ekonomi Dan Bisnis Islam, 9(1), 23–30.
Permatasari, R., & Wijaya, H. (2023). Implementasi user-centered design pada sistem rekomendasi fashion Muslim. Jurnal Desain Interaktif, 5(1), 14–21.
Rahmawati, N., & Hidayat, T. (2023). Preferensi konsumen terhadap atribut hijab: Studi kasus pada remaja Muslimah. Jurnal Riset Ekonomi Syariah, 6(2), 121–132.
Ricci, F., Rokach, L., & Shapira, B. (2020). Recommender systems handbook (2nd ed.). Springer. Https://doi.org/10.1007/978-1-4899-7637-6
Safitri, A. D., Sulami, A., & Safitri, J. (2023). PERANCANGAN SISTEM REKOMENDASI PRODUK SEPATU MENGGUNAKAN METODE KNOWLEDGE BASE REKOMENDATION. Jurnal Riset Dan Aplikasi Mahasiswa Informatika (JRAMI), 04. Https://doi.org/10.30998/jrami.v4i03.8767
Santoso, H., & Maulana, I. (2022). Pengembangan sistem rekomendasi produk menggunakan metode RAD. Jurnal Sistem Informasi, 11(1), 45–52.
Saputro, N., Atina, V., & Hartanti, D. (2024). Sistem rekomendasi pemilihan jenis baju batik menggunakan metode knowledge-based di Batik Amarta. JURNAL FASILKOM. Http://dx.doi.org/10.37859/jf.v14i2.7483
Setiawan, B., Sari, P., & Pratama, G. (2022). The impact of personalization on e-commerce platforms. Jurnal Informatika Dan Teknologi, 13(2), 101–109.
Utami, E. P., & Zein, A. (n.d.). Perancangan Sistem Informasi Reservasi Meja Kafe Menggunakan Metode Rad Rapid Application Development Berbasis Web (Studi Kasus : Cafetaria Citra Sawangan Depok). Engineering And Technology International Journal Juli 2023 |, 5(2), 2714–2755. Https://doi.org/10.556442
Wahyuni, S., & Ramadhan, A. (2021). Rapid development of web applications using RAD. Jurnal Teknik Informatika, 7(3), 55–62.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Mayda Nur Rohmani, Dwi Hartanti, Anindhiasti Ayu Kusuma Asri

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.










