LONG BEAN LEAF DISEASE IDENTIFICATION SYSTEM BASED ON MOBILE USING CONVOLUTIONAL NEURAL NETWORK (CNN) METHOD
DOI:
https://doi.org/10.34288/jri.v7i3.373Keywords:
Long Bean, Plant Disease, Convolutional Neural Network (CNN), ResNet-50, MobileAbstract
Long beans (Vigna unguiculata subsp. sesquipedalis), have high nutritional value, besides long beans also have a significant role in the economy of farmers in Indonesia. However, the productivity of this plant is often hampered by various diseases that attack the leaves, which can result in a decrease in the quantity and quality of the harvest. This study has succeeded in developing a Convolutional Neural Network (CNN) model with the ResNet-50 architecture to identify six types of diseases in long bean leaves. The dataset used consists of 2,316 images, divided into training data (80%), validation (15%), and testing (5%). The ResNet-50 model, which consists of 50 layers, applies the transfer learning technique by not training the first 35 layers using a specific dataset, but utilizing weights from ImageNet. Training for 100 epochs produces high accuracy, namely 98.3% for training data, 98.4% for validation data, and 98.7% for testing data. Evaluation using Confusion Matrix, Precision, Recal and F1 Score shows very good performance without prediction errors. The final result of this research is a mobile-based software system that can diagnose diseases quickly and accurately, which can help farmers take appropriate action, and support sustainable agriculture in Indonesia.
Downloads
References
Achmad, Y. F., & Yulfitri, A. (2020). Pengujian Sistem Pendukung Keputusan Menggunakan Black Box Testisng Studi Kasus E-Wisudawan Di Institus Sains Dan Teknologi Al-Kamal. Jurnal Ilmu Komputer, 5, 42.
Afandi, A. R., & Kurnia, H. (2023). Revolusi Teknologi: Masa Depan Kecerdasan Buatan (AI) dan Dampaknya Terhadap Masyarakat. Academy of Social Science and Global Citizenship Journal, 3(1), 9–13. https://doi.org/10.47200/aossagcj.v3i1.1837
Arafa, N. P., Basri, S. R., & Saputra, R. A. (2024). KLASIFIKASI PENYAKIT PADA DAUN TANAMAN CABAI DENGAN PENDEKATAN ARTIFICIAL NEURAL NETWORK ( ANN ). 8(6), 12865–12871.
Astria, C., Windarto, A. P., & Damanik, I. S. (2022). Pemilihan Model Arsitektur Terbaik Dengan Mengoptimasi Learning Rate Pada Neural Network Backpropagation. JURIKOM (Jurnal Riset Komputer), 9(1), 109. https://doi.org/10.30865/jurikom.v9i1.3834
Azka, N. A., & Sayekti, R. S. (2020). KARAKTERISASI AKSESI KACANG PANJANG (Vigna unguiculata subsp. sesquipedalis) LOKAL. Agrotechnology Innovation (Agrinova), 3(2), 14. https://doi.org/10.22146/a.62709
Badan Pusat Statistik indonesia. (2024). Produksi Tanaman Sayuran, 2021-2023. Bps.Go.Id. https://www.bps.go.id/id/statistics-table/2/NjEjMg==/production-of-vegetables.html
Fluorida Fibrianda, M., & Bhawiyuga, A. (2018). Analisis Perbandingan Akurasi Deteksi Serangan Pada Jaringan Komputer Dengan Metode Naïve Bayes Dan Support Vector Machine (SVM). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(9), 3112–3123. http://j-ptiik.ub.ac.id
Hidayat, Z. S. (2024). PENENTUAN UKURAN BATCH OPTIMAL UNTUK PELATIHAN YOLOV8 DALAM PENDETEKSIAN OBJEK PADA KENDARAAN OTONOM DETERMINATION OF OPTIMAL BATCH SIZE FOR YOLOV8. 9(1).
Hidayati, N., Husna Nurrohmah, S., & Ardhany, F. (2020). Isolasi, identifikasi dan karakterisasi penyebab penyakit bercak daun pada semai pinus di perum perhutani BKPH Purworejo, KPH Kedu Selatan. Jurnal Pemuliaan Tanaman Hutan, 14(1), 21–32. https://doi.org/10.20886/jpth.2020.14.1.21-32
Kamdan, Ivana Lucia Kharisma, Gina Purnama Insany, & Paikun. (2022). Research topic modeling in informatics engineering study program at Nusa Putra University using LDA method. International Journal Engineering and Applied Technology (Ijeat), 5(2), 24–35. https://doi.org/10.52005/ijeat.v5i2.76
Kusuma, B. M., Hermanto, T. I., & Lestari, D. (2025). Klasifikasi Jenis Penyakit Pada Tanaman Padi Menggunakan Algoritma Convolutional Neural Network Classification of Paddy Rice Plant Diseases Using Convolutional Neural Network Algorithms. 1, 40–52. https://doi.org/10.26798/jiko.v9i1.1395
Lesmana, A. M., Fadhillah, R. P., & Rozikin, C. (2022). Identifikasi Penyakit pada Citra Daun Kentang Menggunakan Convolutional Neural Network (CNN). Jurnal Sains Dan Informatika, 8(1), 21–30. https://doi.org/10.34128/jsi.v8i1.377
Maysela, A., & Rohma, N. (2024). Diagnosa Penyakit Tanaman Tomat pada Citra Daun Menggunakan Metode Convolutional Neural Network (CNN). JIMU: Jurnal Ilmiah Multi Disiplin, 02(03), 555–567. https://ojs.smkmerahputih.com/index.php/jimu/article/view/407
Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-SAKTI, 5(2), 697–711.
Peryanto, A., Yudhana, A., & Umar, R. (2020). Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation. Journal of Applied Informatics and Computing, 4(1), 45–51. https://doi.org/10.30871/jaic.v4i1.2017
Putra, I. P., Rusbandi, R., & Alamsyah, D. (2022). Klasifikasi Penyakit Daun Jagung Menggunakan Metode Convolutional Neural Network. Jurnal Algoritme, 2(2), 102–112. https://doi.org/10.35957/algoritme.v2i2.2360
Putra, J. V. P., Ayu, F., & Julianto, B. (2023). Implementasi Pendeteksi Penyakit pada Daun Alpukat Menggunakan Metode CNN. Stains (Seminar Nasional Teknologi & Sains), 2(1), 155–162. https://proceeding.unpkediri.ac.id/index.php/stains/article/view/2888
Rismiyati, R., & Luthfiarta, A. (2021). VGG16 Transfer Learning Architecture for Salak Fruit Quality Classification. Telematika, 18(1), 37. https://doi.org/10.31315/telematika.v18i1.4025
Rizki, F., Kharisma Putra, M. P., Assuja, M. A., & Ariany, F. (2023). Implementasi Deep Leraning Lenet Dengan Augmentasi Data Pada Identifikasi Anggrek. Jurnal Informatika Dan Rekayasa Perangkat Lunak, 4(3), 357–366. https://doi.org/10.33365/jatika.v4i3.3652
Setyadi, R. A., Rahman, S., Manurung, D., Hasanah, M., & Indrawati, A. (2024). Implementasi Transfer Learning Untuk Klasifikasi Penyakit Pada Daun Cabai Menggunakan Cnn. Djtechno: Jurnal Teknologi Informasi, 5(2), 304–315. https://doi.org/10.46576/djtechno.v5i2.4642
Suprihanto, S., Awaludin, I., Fadhil, M., & Zulfikor, M. A. Z. (2022). Analisis Kinerja ResNet-50 dalam Klasifikasi Penyakit pada Daun Kopi Robusta. Jurnal Informatika, 9(2), 116–122. https://doi.org/10.31294/inf.v9i1.13049
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhamad Fadiah Nurjaman, Gina Purnama Insany, Imam Sanjaya

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.










