LONG BEAN LEAF DISEASE IDENTIFICATION SYSTEM BASED ON MOBILE USING CONVOLUTIONAL NEURAL NETWORK (CNN) METHOD

Authors

  • Muhamad Fadiah Nurjaman Nusaputra University
  • Gina Purnama Insany Nusaputra University
  • Imam Sanjaya Nusaputra University
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v7i3.373

Keywords:

Long Bean, Plant Disease, Convolutional Neural Network (CNN), ResNet-50, Mobile

Abstract

Long beans (Vigna unguiculata subsp. sesquipedalis), have high nutritional value, besides long beans also have a significant role in the economy of farmers in Indonesia. However, the productivity of this plant is often hampered by various diseases that attack the leaves, which can result in a decrease in the quantity and quality of the harvest. This study has succeeded in developing a Convolutional Neural Network (CNN) model with the ResNet-50 architecture to identify six types of diseases in long bean leaves. The dataset used consists of 2,316 images, divided into training data (80%), validation (15%), and testing (5%). The ResNet-50 model, which consists of 50 layers, applies the transfer learning technique by not training the first 35 layers using a specific dataset, but utilizing weights from ImageNet. Training for 100 epochs produces high accuracy, namely 98.3% for training data, 98.4% for validation data, and 98.7% for testing data. Evaluation using Confusion Matrix, Precision, Recal and F1 Score shows very good performance without prediction errors. The final result of this research is a mobile-based software system that can diagnose diseases quickly and accurately, which can help farmers take appropriate action, and support sustainable agriculture in Indonesia.

Downloads

Download data is not yet available.

References

Achmad, Y. F., & Yulfitri, A. (2020). Pengujian Sistem Pendukung Keputusan Menggunakan Black Box Testisng Studi Kasus E-Wisudawan Di Institus Sains Dan Teknologi Al-Kamal. Jurnal Ilmu Komputer, 5, 42.

Afandi, A. R., & Kurnia, H. (2023). Revolusi Teknologi: Masa Depan Kecerdasan Buatan (AI) dan Dampaknya Terhadap Masyarakat. Academy of Social Science and Global Citizenship Journal, 3(1), 9–13. https://doi.org/10.47200/aossagcj.v3i1.1837

Arafa, N. P., Basri, S. R., & Saputra, R. A. (2024). KLASIFIKASI PENYAKIT PADA DAUN TANAMAN CABAI DENGAN PENDEKATAN ARTIFICIAL NEURAL NETWORK ( ANN ). 8(6), 12865–12871.

Astria, C., Windarto, A. P., & Damanik, I. S. (2022). Pemilihan Model Arsitektur Terbaik Dengan Mengoptimasi Learning Rate Pada Neural Network Backpropagation. JURIKOM (Jurnal Riset Komputer), 9(1), 109. https://doi.org/10.30865/jurikom.v9i1.3834

Azka, N. A., & Sayekti, R. S. (2020). KARAKTERISASI AKSESI KACANG PANJANG (Vigna unguiculata subsp. sesquipedalis) LOKAL. Agrotechnology Innovation (Agrinova), 3(2), 14. https://doi.org/10.22146/a.62709

Badan Pusat Statistik indonesia. (2024). Produksi Tanaman Sayuran, 2021-2023. Bps.Go.Id. https://www.bps.go.id/id/statistics-table/2/NjEjMg==/production-of-vegetables.html

Fluorida Fibrianda, M., & Bhawiyuga, A. (2018). Analisis Perbandingan Akurasi Deteksi Serangan Pada Jaringan Komputer Dengan Metode Naïve Bayes Dan Support Vector Machine (SVM). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(9), 3112–3123. http://j-ptiik.ub.ac.id

Hidayat, Z. S. (2024). PENENTUAN UKURAN BATCH OPTIMAL UNTUK PELATIHAN YOLOV8 DALAM PENDETEKSIAN OBJEK PADA KENDARAAN OTONOM DETERMINATION OF OPTIMAL BATCH SIZE FOR YOLOV8. 9(1).

Hidayati, N., Husna Nurrohmah, S., & Ardhany, F. (2020). Isolasi, identifikasi dan karakterisasi penyebab penyakit bercak daun pada semai pinus di perum perhutani BKPH Purworejo, KPH Kedu Selatan. Jurnal Pemuliaan Tanaman Hutan, 14(1), 21–32. https://doi.org/10.20886/jpth.2020.14.1.21-32

Kamdan, Ivana Lucia Kharisma, Gina Purnama Insany, & Paikun. (2022). Research topic modeling in informatics engineering study program at Nusa Putra University using LDA method. International Journal Engineering and Applied Technology (Ijeat), 5(2), 24–35. https://doi.org/10.52005/ijeat.v5i2.76

Kusuma, B. M., Hermanto, T. I., & Lestari, D. (2025). Klasifikasi Jenis Penyakit Pada Tanaman Padi Menggunakan Algoritma Convolutional Neural Network Classification of Paddy Rice Plant Diseases Using Convolutional Neural Network Algorithms. 1, 40–52. https://doi.org/10.26798/jiko.v9i1.1395

Lesmana, A. M., Fadhillah, R. P., & Rozikin, C. (2022). Identifikasi Penyakit pada Citra Daun Kentang Menggunakan Convolutional Neural Network (CNN). Jurnal Sains Dan Informatika, 8(1), 21–30. https://doi.org/10.34128/jsi.v8i1.377

Maysela, A., & Rohma, N. (2024). Diagnosa Penyakit Tanaman Tomat pada Citra Daun Menggunakan Metode Convolutional Neural Network (CNN). JIMU: Jurnal Ilmiah Multi Disiplin, 02(03), 555–567. https://ojs.smkmerahputih.com/index.php/jimu/article/view/407

Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-SAKTI, 5(2), 697–711.

Peryanto, A., Yudhana, A., & Umar, R. (2020). Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation. Journal of Applied Informatics and Computing, 4(1), 45–51. https://doi.org/10.30871/jaic.v4i1.2017

Putra, I. P., Rusbandi, R., & Alamsyah, D. (2022). Klasifikasi Penyakit Daun Jagung Menggunakan Metode Convolutional Neural Network. Jurnal Algoritme, 2(2), 102–112. https://doi.org/10.35957/algoritme.v2i2.2360

Putra, J. V. P., Ayu, F., & Julianto, B. (2023). Implementasi Pendeteksi Penyakit pada Daun Alpukat Menggunakan Metode CNN. Stains (Seminar Nasional Teknologi & Sains), 2(1), 155–162. https://proceeding.unpkediri.ac.id/index.php/stains/article/view/2888

Rismiyati, R., & Luthfiarta, A. (2021). VGG16 Transfer Learning Architecture for Salak Fruit Quality Classification. Telematika, 18(1), 37. https://doi.org/10.31315/telematika.v18i1.4025

Rizki, F., Kharisma Putra, M. P., Assuja, M. A., & Ariany, F. (2023). Implementasi Deep Leraning Lenet Dengan Augmentasi Data Pada Identifikasi Anggrek. Jurnal Informatika Dan Rekayasa Perangkat Lunak, 4(3), 357–366. https://doi.org/10.33365/jatika.v4i3.3652

Setyadi, R. A., Rahman, S., Manurung, D., Hasanah, M., & Indrawati, A. (2024). Implementasi Transfer Learning Untuk Klasifikasi Penyakit Pada Daun Cabai Menggunakan Cnn. Djtechno: Jurnal Teknologi Informasi, 5(2), 304–315. https://doi.org/10.46576/djtechno.v5i2.4642

Suprihanto, S., Awaludin, I., Fadhil, M., & Zulfikor, M. A. Z. (2022). Analisis Kinerja ResNet-50 dalam Klasifikasi Penyakit pada Daun Kopi Robusta. Jurnal Informatika, 9(2), 116–122. https://doi.org/10.31294/inf.v9i1.13049

Downloads

Published

2025-06-11

How to Cite

Muhamad Fadiah Nurjaman, Purnama Insany, G., & Sanjaya, I. (2025). LONG BEAN LEAF DISEASE IDENTIFICATION SYSTEM BASED ON MOBILE USING CONVOLUTIONAL NEURAL NETWORK (CNN) METHOD. Jurnal Riset Informatika, 7(3), 128–137. https://doi.org/10.34288/jri.v7i3.373

Issue

Section

Articles