Complex-Valued Neural Network And Fuzzy Inference System For Image Diagnosis Of Rice Leaf Diseases

Authors

  • Mutiara Irmadhani UPN Veteran Jawa Timur
  • Wahyu Syaifullah JS UPN Veteran Jawa Timur
  • Mohammad Idhom UPN Veteran Jawa Timur
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v7i3.370

Keywords:

Leaf Disease Rice, Classification, Detection, CVNN, Fuzzy Inference System

Abstract

Rice serves as a crucial food crop and holds significant importance in Indonesia's agricultural sector. so the health of rice leaves determines the productivity of the crop. Serious problems such as crop failure often occur due to leaf disease attacks caused by pests or unfavorable climatic factors. Controlling these diseases requires proper knowledge so as not to cause negative impacts on the ecosystem due to misdiagnosis. This research develops a Complex-Valued Neural Network (CVNN) and Fuzzy Inference System (FIS) based method to identify the type of disease and determine its severity. CVNN was used to classify leaf images based on detected visual traits, while FIS analyzed the relationship between these traits and disease severity using fuzzy rules constructed from expert data or input. The results show that CVNN provides superior performance compared to CNN, CVNN model with an accuracy of 92%, where all classes produce high and balanced. While the CNN model also provides satisfactory results with an accuracy of 89%, although there is still an imbalance in some classes. The results of the FIS model on the image The severity of the image of rice leaf disease is the most high category in the leaf blast class is the highest of all classes. The combination of CVNN and FIS model proves that this hybrid approach is effective to support diagnosis, so it can help farmers in making early and precise decisions.

Downloads

Download data is not yet available.

References

Acarya, Burhan Syarif, Amri Muhaimin, and Kartika Maulida Hindrayani. 2024. “Identifikasi Penyakit Daun Jeruk Siam Menggunakan Convolutional Neural Network (CNN) Dengan Arsitektur EfficientNet.” G-Tech: Jurnal Teknologi Terapan 8(2): 1040–48. doi:10.33379/gtech.v8i2.4120.

Athiyah, Ummi, Adela Putri Handayani, Muhammad Yusril Aldean, Novantri Prasetya Putra, and Rafian Ramadhani. 2021. “Sistem Inferensi Fuzzy: Pengertian, Penerapan, Dan Manfaatnya.” Journal of Dinda : Data Science, Information Technology, and Data Analytics 1(2): 73–76. doi:10.20895/dinda.v1i2.201.

Barrachina, Jose Agustin, Chengfang Ren, Gilles Vieillard, Christele Morisseau, and Jean-Philippe Ovarlez. 2023. “Theory and Implementation of Complex-Valued Neural Networks.” http://arxiv.org/abs/2302.08286.

Bukhari, Syeda Aliya. 2024. “Implementasi Metode Convolutional Neural Network (Cnn) Untuk Diagnosa Penyakit Tanaman Cabai Pada Citra Daun.” Jurnal Multidisiplin Saintek 3(0): 1–11.

Destiawan, Danang -, Dwi Arman Prasetya, and Muhammad Ansori. 2018. “Implementasi Fuzzy Logic Pada Short Range Radar Untuk Pengamanan BT (Basis Tempur) Tingkat Regu.” Jurnal Teknik Elektro dan Komputer TRIAC 5(2). doi:10.21107/triac.v5i2.4062.

Dewi, Candra, Elok Fatma Anjarwati, and Imam Cholissodin. 2017. “Implementasi Citra Digital Untuk Identifikasi Penyakit Pada Daun Padi Menggunakan Anfis.” Proceedings of National Colloquium Research and Community Service 1.

Diyasa, I Gede Susrama Mas, Akhmad Fauzi, Ariyono Setiawan, Moch. Idhom, Radical Rakhman Wahid, and Alfath Daryl Alhajir. 2021. “Pre-Trained Deep Convolutional Neural Network for Detecting Malaria on the Human Blood Smear Images.” In 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), IEEE, 235–40. doi:10.1109/ICAIIC51459.2021.9415183.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. www.deeplearningbook.org (May 20, 2025).

Jinan, Abwabul, B Herawan Hayadi, and Universitas Potensi Utama. 2022. “Klasifikasi Penyakit Tanaman Padi Mengunakan Metode Convolutional Neural Network Melalui Citra Daun (Multilayer Perceptron).” Journal of Computer and Engineering Science 1(2): 37–44.

Jumadi, Juju, and Devi Sartika. 2020. “Implementasi Metode Fuzzy Inference System Untuk Siswa Kelas Unggul.” In Seminar Nasional Teknologi Informasi & Komunikasi 1(1): 1–9. www.snastikom.com.

Krisdianto, Krisdianto, Elta Sonalitha, and Yandhika Surya Akbar Gumilang. 2024. “Deteksi Penyakit Padi Menggunakan YOLO.” Uranus : Jurnal Ilmiah Teknik Elektro, Sains dan Informatika 2(3): 125–34. doi:10.61132/uranus.v2i3.259.

Kristanaya, M., Nariswari, N, U., Azzahra, P, M., Syah, P, M., Pratama, A, R., Saputra, W, S, J. 2024. “Classification of Brain Tumors Using the VGG19 Method.” Jurnal Komputer Indonesia 3(2).

Liang, Wan-jie, Hong Zhang, Gu-feng Zhang, and Hong-xin Cao. 2019. “Rice Blast Disease Recognition Using a Deep Convolutional Neural Network.” Scientific Reports 9(1): 2869. doi:10.1038/s41598-019-38966-0.

Nurdiawan, Odi. 2018. “Penerapan Sistem Pakar Menggunakan Metode Fuzzy Sugeno Identifikasi Hama Tanaman Padi.” JATISI (Jurnal Teknik Informatika dan Sistem Informasi) 5(1): 45–59. doi:10.35957/jatisi.v5i1.112.

Putri, Irma Amanda, Dwi Arman Prasetya, and Tresna Maulana Fahrudin. 2024. “IMAGE CLASSIFICATION OF VINE LEAF DISEASES USING COMPLEX-VALUED NEURAL NETWORK.” JIKO (Jurnal Informatika dan Komputer) 7(1): 36–42. doi:10.33387/jiko.v7i1.7809.

Rahmawati, Adinda Aulia, Amri Muhaimin, and Dwi Arman Prasetya. 2024. “CLASSIFICATION OF JAVANESE NGLEGENA SCRIPT USING COMPLEXVALUED NEURAL NETWORK.” JIKO (Jurnal Informatika dan Komputer) 7(1): 30–35. doi:10.33387/jiko.v7i1.7808.

Riyantoko, P A, Sugiarto, and K M Hindrayani. 2021. “Facial Emotion Detection Using Haar-Cascade Classifier and Convolutional Neural Networks.” Journal of Physics: Conference Series 1844(1): 012004. doi:10.1088/1742-6596/1844/1/012004.

Wardhana, Rakha Gusti, Gunawan Wang, and Farida Sibuea. 2023. “PENERAPAN MACHINE LEARNING DALAM PREDIKSI TINGKAT KASUS PENYAKIT DI INDONESIA.” Journal of Information System Management (JOISM) 5(1): 40–45. doi:10.24076/joism.2023v5i1.1136.

Xu, Jie, Chengyu Wu, Shuangshuang Ying, and Hui Li. 2022. “The Performance Analysis of Complex-Valued Neural Network in Radio Signal Recognition.” IEEE Access 10: 48708–18. doi:10.1109/ACCESS.2022.3171856.

Zhou, Guoxiong, Wenzhuo Zhang, Aibin Chen, Mingfang He, and Xueshuo Ma. 2019. “Rapid Detection of Rice Disease Based on FCM-KM and Faster R-CNN Fusion.” IEEE Access 7: 143190–206. doi:10.1109/ACCESS.2019.2943454.

Downloads

Published

2025-06-11

How to Cite

Mutiara Irmadhani, Syaifullah JS, W., & Idhom, M. (2025). Complex-Valued Neural Network And Fuzzy Inference System For Image Diagnosis Of Rice Leaf Diseases. Jurnal Riset Informatika, 7(3), 102–110. https://doi.org/10.34288/jri.v7i3.370

Issue

Section

Articles