Sentiment Analysis on Import Tariff Policy and Gold Price Increase with TF-IDF
DOI:
https://doi.org/10.34288/jri.v7i3.361Keywords:
gold, sentiment analysis, social media, SMOTE, TF-IDFAbstract
Changes in global economic policy, such as Donald Trump's import tariff policy in 2025, have generated various public responses recorded through social media such as Twitter. Analysis of this public opinion is important to understand public perception of the dynamics of gold prices as a strategic commodity. This study aims to analyze public sentiment towards the issue of tariff policies and gold using TF-IDF feature extraction. To overcome class imbalance in tweet data, the Synthetic Minority Over-sampling Technique (SMOTE) technique was used. The dataset was obtained from Twitter with the keywords "trump", "tariffs", and "gold", then preprocessing and sentiment labeling (positive, negative, neutral) were carried out. The results of the analysis showed that 88.8% of tweets contained positive sentiment, 6.9% negative, and 4.1% neutral. The model evaluation produced an accuracy of 81.23%, with the highest precision in the positive class (0.81) and a recall of 1.00. These findings indicate that the issue of tariff policies is associated optimistically by the public because it is considered beneficial to gold prices.
Downloads
References
Al Wahhab KH, H. A., & Masruroh, A. (2025). Pengaruh Harga Emas DUnia dan Ekonomi Makro Terhadap Indeks Saham Syariah Indonesia (ISSI). Jurnal Ilmiah Mahasiswa Jurusan Hukum Ekonomi Syariah, 6, 550–571.
Anisa, N. (2023). Komunikasi Budaya dan Transformasi Opini Publik : Studi Kasus Hastag #FreePalestine. AL MUNIR: Jurnal Komunikasi Dan Penyiaran Islam, 14, 111–125.
Darmawan, B., Laksito, A. D., Yudianto, M. R. A., & Sidauruk, A. (2023). Analisis Perbandingan Ekstraksi Fitur Teks pada Sentimen Analisis Kenaikan Harga BBM. Krea-TIF: Jurnal Teknik Informatika, 11(1), 53–63. https://doi.org/10.32832/krea-tif.v11i1.13819
Eka Putra, F. P., Maulana, F. I., Akbar, N. M., & Febriantoro, W. (2023). Twitter sentiment analysis about economic recession in indonesia. Bulletin of Social Informatics Theory and Application, 7(1), 1–7. https://doi.org/10.31763/businta.v7i1.592
Findawati, Y. (2020). Buku Ajar Text Mining. In R. Dijaya (Ed.), Buku Ajar Text Mining. UMSIDA Press. https://doi.org/10.21070/2020/978-623-6833-19-3
Findawati, Y., & Rosid, M. A. (2020). Buku Ajar Text Mining (R. Dijaya, Ed.; Pertama). UMSIDA Press.
Hendarto, Y. M. (2025). Mengapa China Tidak Gentar terhadap Tarif Trump? Kompas.Id. https://www.kompas.id/artikel/mengapa-china-tidak-gentar-terhadap-tarif-trump?)
Hossain, A., Karimuzzaman, M., Hossain, M. M., & Rahman, A. (2021). Text mining and sentiment analysis of newspaper headlines. Information (Switzerland), 12(10). https://doi.org/10.3390/info12100414
Iskandar Mulyana, D., & Lutfianti, N. (2023). Penerapan Sentimen Analisis Dengan Algoritma SVM Dalam Tanggapan Netizen Terhadap Berita Resesi 2023. Sisfotenika, 13(1), 53–64.
Mirdan, A. S., Buyrukoglu, S., & Baker, M. R. (2025). Advanced deep learning techniques for sentiment analysis: combining Bi-LSTM, CNN, and attention layers. International Journal of Advances in Intelligent Informatics, 11(1), 55. https://doi.org/10.26555/ijain.v11i1.1848
Savira, R., Solichin, A., & Syafrullah, M. (2023). Analisis Sentimen Pada Twitter Terhadap Kenaikan Bbm 2022 Dengan Lexicon Dan Support Vector Machine. Prosiding Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI), 2(1), 211–218.
Septiana, Arrum., & Zulkifli. (2024). Planning and Preparation Facing A Recession in 2023. Jurnal Riset Akuntansi Dan Bisnis, 18(2), 140–152.
Setiawan, Y., Maulidevi, N. U., & Surendro, K. (2024). The Optimization of n-Gram Feature Extraction Based on Term Occurrence for Cyberbullying Classification. Data Science Journal, 23(1), 1–21. https://doi.org/10.5334/dsj-2024-031
Sunaryo. (2022). Determinan Harga Emas (Studi Kasus pada PT Aneka Tambang, Tbk. Periode Tahun 2010 - 2019). KINERJA Jurnal Ekonomi Dan Bisnis, 5(1), 1–17.
Suparmono, S. (2018). Pengantar ekonomi makro. In UPP STIM YKPN. UPP STIM YKPN.
Sutoyo, E., & Fadlurrahman, M. A. (2020). Penerapan SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Television Advertisement Performance Rating Menggunakan Artificial Neural Network. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 6(3), 379. https://doi.org/10.26418/jp.v6i3.42896
Tesalonika, R., & Mailoa, E. (2024). Implementasi Algoritma Naive Bayes Untuk Analisis Sentimen Isu Resesi Ekonomi 2023 Di Indonesia Pada Platform Twitter. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 9(1), 34–40. https://doi.org/10.29100/jipi.v9i1.4288
Vijayaraghavan, S., & Basu, D. (2020). Sentiment Analysis in Drug Reviews using Supervised Machine Learning Algorithms. http://arxiv.org/abs/2003.11643
Zahri, A., Adam, R., & Setiawan, E. B. (2023). Social Media Sentiment Analysis using Convolutional Neural Network (CNN) dan Gated Recurrent Unit (GRU). Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika (JITEKI), 9(1), 119–131. https://doi.org/10.26555/jiteki.v9i1.25813
Zainu Ridlo, A., Ahmad Rievai, R., Rahayu Yuningsih, S., Rysni Mahalani, E., & Khoirutun Nisa, P. (2024). Ruang Publik Baru Melalui Desain Di Media Sosial. Jurnal Ilmu Komunikasi Dan Sosial Politik, 01(04), 719–723.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 siti masripah, Rizal Amegia Saputra

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.










