Sentiment Analysis on Import Tariff Policy and Gold Price Increase with TF-IDF

Authors

  • siti masripah Universitas Bina Sarana Informatika
  • Rizal Amegia Saputra Universitas Bina Sarana Informatika
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v7i3.361

Keywords:

gold, sentiment analysis, social media, SMOTE, TF-IDF

Abstract

Changes in global economic policy, such as Donald Trump's import tariff policy in 2025, have generated various public responses recorded through social media such as Twitter. Analysis of this public opinion is important to understand public perception of the dynamics of gold prices as a strategic commodity. This study aims to analyze public sentiment towards the issue of tariff policies and gold using TF-IDF feature extraction. To overcome class imbalance in tweet data, the Synthetic Minority Over-sampling Technique (SMOTE) technique was used. The dataset was obtained from Twitter with the keywords "trump", "tariffs", and "gold", then preprocessing and sentiment labeling (positive, negative, neutral) were carried out. The results of the analysis showed that 88.8% of tweets contained positive sentiment, 6.9% negative, and 4.1% neutral. The model evaluation produced an accuracy of 81.23%, with the highest precision in the positive class (0.81) and a recall of 1.00. These findings indicate that the issue of tariff policies is associated optimistically by the public because it is considered beneficial to gold prices.

Downloads

Download data is not yet available.

References

Al Wahhab KH, H. A., & Masruroh, A. (2025). Pengaruh Harga Emas DUnia dan Ekonomi Makro Terhadap Indeks Saham Syariah Indonesia (ISSI). Jurnal Ilmiah Mahasiswa Jurusan Hukum Ekonomi Syariah, 6, 550–571.

Anisa, N. (2023). Komunikasi Budaya dan Transformasi Opini Publik : Studi Kasus Hastag #FreePalestine. AL MUNIR: Jurnal Komunikasi Dan Penyiaran Islam, 14, 111–125.

Darmawan, B., Laksito, A. D., Yudianto, M. R. A., & Sidauruk, A. (2023). Analisis Perbandingan Ekstraksi Fitur Teks pada Sentimen Analisis Kenaikan Harga BBM. Krea-TIF: Jurnal Teknik Informatika, 11(1), 53–63. https://doi.org/10.32832/krea-tif.v11i1.13819

Eka Putra, F. P., Maulana, F. I., Akbar, N. M., & Febriantoro, W. (2023). Twitter sentiment analysis about economic recession in indonesia. Bulletin of Social Informatics Theory and Application, 7(1), 1–7. https://doi.org/10.31763/businta.v7i1.592

Findawati, Y. (2020). Buku Ajar Text Mining. In R. Dijaya (Ed.), Buku Ajar Text Mining. UMSIDA Press. https://doi.org/10.21070/2020/978-623-6833-19-3

Findawati, Y., & Rosid, M. A. (2020). Buku Ajar Text Mining (R. Dijaya, Ed.; Pertama). UMSIDA Press.

Hendarto, Y. M. (2025). Mengapa China Tidak Gentar terhadap Tarif Trump? Kompas.Id. https://www.kompas.id/artikel/mengapa-china-tidak-gentar-terhadap-tarif-trump?)

Hossain, A., Karimuzzaman, M., Hossain, M. M., & Rahman, A. (2021). Text mining and sentiment analysis of newspaper headlines. Information (Switzerland), 12(10). https://doi.org/10.3390/info12100414

Iskandar Mulyana, D., & Lutfianti, N. (2023). Penerapan Sentimen Analisis Dengan Algoritma SVM Dalam Tanggapan Netizen Terhadap Berita Resesi 2023. Sisfotenika, 13(1), 53–64.

Mirdan, A. S., Buyrukoglu, S., & Baker, M. R. (2025). Advanced deep learning techniques for sentiment analysis: combining Bi-LSTM, CNN, and attention layers. International Journal of Advances in Intelligent Informatics, 11(1), 55. https://doi.org/10.26555/ijain.v11i1.1848

Savira, R., Solichin, A., & Syafrullah, M. (2023). Analisis Sentimen Pada Twitter Terhadap Kenaikan Bbm 2022 Dengan Lexicon Dan Support Vector Machine. Prosiding Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI), 2(1), 211–218.

Septiana, Arrum., & Zulkifli. (2024). Planning and Preparation Facing A Recession in 2023. Jurnal Riset Akuntansi Dan Bisnis, 18(2), 140–152.

Setiawan, Y., Maulidevi, N. U., & Surendro, K. (2024). The Optimization of n-Gram Feature Extraction Based on Term Occurrence for Cyberbullying Classification. Data Science Journal, 23(1), 1–21. https://doi.org/10.5334/dsj-2024-031

Sunaryo. (2022). Determinan Harga Emas (Studi Kasus pada PT Aneka Tambang, Tbk. Periode Tahun 2010 - 2019). KINERJA Jurnal Ekonomi Dan Bisnis, 5(1), 1–17.

Suparmono, S. (2018). Pengantar ekonomi makro. In UPP STIM YKPN. UPP STIM YKPN.

Sutoyo, E., & Fadlurrahman, M. A. (2020). Penerapan SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Television Advertisement Performance Rating Menggunakan Artificial Neural Network. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 6(3), 379. https://doi.org/10.26418/jp.v6i3.42896

Tesalonika, R., & Mailoa, E. (2024). Implementasi Algoritma Naive Bayes Untuk Analisis Sentimen Isu Resesi Ekonomi 2023 Di Indonesia Pada Platform Twitter. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 9(1), 34–40. https://doi.org/10.29100/jipi.v9i1.4288

Vijayaraghavan, S., & Basu, D. (2020). Sentiment Analysis in Drug Reviews using Supervised Machine Learning Algorithms. http://arxiv.org/abs/2003.11643

Zahri, A., Adam, R., & Setiawan, E. B. (2023). Social Media Sentiment Analysis using Convolutional Neural Network (CNN) dan Gated Recurrent Unit (GRU). Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika (JITEKI), 9(1), 119–131. https://doi.org/10.26555/jiteki.v9i1.25813

Zainu Ridlo, A., Ahmad Rievai, R., Rahayu Yuningsih, S., Rysni Mahalani, E., & Khoirutun Nisa, P. (2024). Ruang Publik Baru Melalui Desain Di Media Sosial. Jurnal Ilmu Komunikasi Dan Sosial Politik, 01(04), 719–723.

Downloads

Published

2025-06-11

How to Cite

masripah, siti, & Amegia Saputra, R. (2025). Sentiment Analysis on Import Tariff Policy and Gold Price Increase with TF-IDF. Jurnal Riset Informatika, 7(3), 87–92. https://doi.org/10.34288/jri.v7i3.361

Issue

Section

Articles