Comparison of Decision Tree, Naive Bayes and Random Forest Algorithm to get the Best Performance of Algorithm for Customer Credit Classification
Keywords:
Credit Customer, Classification, Random ForestAbstract
Credit is a potential income and the most significant business operation risk for a bank. Bad credit has become an ingrained problem in the banking world. Therefore, this research aims to classify customer data profiles who have the opportunity to be able to apply for a loan or not to reduce the risk of bad credit in the future by classifying using three commonly used data mining algorithms, namely the Decision Tree algorithm, Naïve Bayes and Random forest. The research was conducted using an experimental, descriptive method by testing the accuracy of the three methods to get the best performance. Based on the experiments' results, the accuracy performance with the confusion matrix was 73.20% for the Decision Tree algorithm, then the accuracy for the Naive Bayes algorithm was 74.4% and Random Forest was 77.4%. Meanwhile, performance evaluation is based on the Receiver Operating Characteristics (ROC) curve by looking at the resulting Area Under Curve (AUC) value of 0.717 for the Decision Tree algorithm, while Naive Bayes produces an AUC value of 0.741 and the largest is Random Forest at 0.796. So it can be concluded that the best performance of the classification carried out is the one that uses the Random Forest algorithm. Then, from the validation results using the T-Test of the three methods being compared, Random Forest produces a significant difference in the level of accuracy compared to the accuracy produced by the Decision Tree, namely with an alpha value of 0.031.
Downloads
References
Bahri, S., & Lubis, A. (2020). Metode Klasifikasi Decision Tree Untuk Memprediksi Juara English Premier League. Jurnal Sintaksis, 2(04), 63–70. Retrieved from https://www.ojs.yayasanalmaksum.ac.id/index.php/Sintaksis/article/view/47
Buani, D. C. P., & Suryani, I. (2022). Implementation of Machine Learning Algorithms for Early Detection of Cervical Cancer Based on Behavioral Determinants. Jurnal Riset Informatika, 5(1), 445–450. https://doi.org/10.34288/jri.v5i1.453
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. 6, 120–127. https://doi.org/10.23977/curtm.2023.060818
Darmawan, T. (2020). Credit Classification Using CRISP-DM Method On Bank ABC Customers. International Journal of Emerging Trends in Engineering Research, 8(6), 2375–2380. https://doi.org/10.30534/ijeter/2020/28862020
Ethem, A. (2015). Introduction to Machine Learning Second Edition Adaptive Computation and Machine Learning. In Massachusetts Institute of Technology. Retrieved from https://kkpatel7.files.wordpress.com/2015/04/alppaydin_machinelearning_2010.pdf
Fikrillah, H. N. F., Hudawiguna, S., & Juliane, C. (2023). Klasifikasi Penerima Bansos Menggunakan Algoritma Naive Bayes. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 10(1), 683–695. Retrieved from https://jurnal.mdp.ac.id/index.php/jatisi/article/view/3624
Heliyanti Susana. (2022). Penerapan Model Klasifikasi Metode Naive Bayes Terhadap Penggunaan Akses Internet. Jurnal Riset Sistem Informasi Dan Teknologi Informasi (JURSISTEKNI), 4(1), 1–8. https://doi.org/10.52005/jursistekni.v4i1.96
Jasmir, J., Sika, X., Mulyadi, M., & Amelia, R. (2022). Klasifikasi Kelayakan Pemberian Kredit Pada Calon Debitur Menggunakan Naïve Bayes. JURIKOM (Jurnal Riset Komputer), 9(6), 1833. https://doi.org/10.30865/jurikom.v9i6.5131
Juwita, Safii, M., & Efendi Damanik, B. (2022). Algoritma Naïve Bayes Untuk Memprediksi Penjualan Pada Toko VJCakes Pematang Siantar. Journal of Machine Learning and Artificial Intelligence, 1(4), 337–346. https://doi.org/10.55123/jomlai.v1i4.1674
Li, C., Luo, X., Tang, S., & Xie, M. (2023). Research on Credit Customer Management Based on Customer Classification and Classification Preference. Journal of Global Humanities and Social Sciences, 4(6), 282–287. https://doi.org/10.61360/bonighss232015310604
Ningsih, W., Budiman, B., & Umami, I. (2022). Implementasi Algoritma Naïve Bayes Untuk Menentukan Calon Penerima Beasiswa Di SMK YPM 14 Sumobito Jombang. Jurnal Teknologi Dan Sistem Informasi Bisnis, 4(2), 446–454. https://doi.org/10.47233/jteksis.v4i2.570
Nurdina Rasjid, Nurhikmah Arifin, & Nilam Cahya. (2021). Klasifikasi Nasabah Bank Layak Kredit Menggunakan Metode Naive Bayes. Jurnal Ilmiah Sistem Informasi Dan Ilmu Komputer, 1(1), 01–10. https://doi.org/10.55606/juisik.v2i2.187
Nurjanah, I., Karaman, J., Widaningrum, I., Mustikasari, D., & Sucipto, S. (2023). Penggunaan Algoritma Naïve Bayes Untuk Menentukan Pemberian Kredit Pada Koperasi Desa. Explorer, 3(2), 77–87. https://doi.org/10.47065/explorer.v3i2.766
Panggabean, I. M. (2022). Analisis Prediksi Kelayakan Nasabah Kredit Menggunakan Algoritma Random Forest Menggunakan PEGA dan WEKA. 5, 78–90.
Putri, N. B., & Wijayanto, A. W. (2022). Analisis Komparasi Algoritma Klasifikasi Data Mining Dalam Klasifikasi Website Phishing. Komputika : Jurnal Sistem Komputer, 11(1), 59–66. https://doi.org/10.34010/komputika.v11i1.4350
Putro, H. F., Vulandari, R. T., & Saptomo, W. L. Y. (2020). Penerapan Metode Naive Bayes Untuk Klasifikasi Pelanggan. Jurnal Teknologi Informasi Dan Komunikasi (TIKomSiN), 8(2). https://doi.org/10.30646/tikomsin.v8i2.500
Rahmawati, P., Larasati, A., & Marsono, M. (2022). Pengembangan Model Persetujuan Kredit Nasabah Bank Dengan Algoritma Klasifikasi Naïve Bayes, Decision Tree, Dan Artificial Neural Network. J@ti Undip: Jurnal Teknik Industri, 17(1), 1–12. https://doi.org/10.14710/jati.1.1.1-12
Religia, Y., Pranoto, G. T., & Santosa, E. D. (2020). South German Credit Data Classification Using Random Forest Algorithm to Predict Bank Credit Receipts. JISA(Jurnal Informatika Dan Sains), 3(2), 62–66. https://doi.org/10.31326/jisa.v3i2.837
Suci Amaliah, Nusrang, M., & Aswi, A. (2022). Penerapan Metode Random Forest Untuk Klasifikasi Varian Minuman Kopi di Kedai Kopi Konijiwa Bantaeng. VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 4(3), 121–127. https://doi.org/10.35580/variansiunm31
Susilo, A. (2023). Perbandingan Kinerja K-Nearest Neighbors dan Naive Bayes Untuk Klasifikasi Perilaku Nasabah Pada Pembayaran Kredit Bank. Jurnal Sains Dan Teknologi (JSIT), 3(3), 364–379. https://doi.org/10.47233/jsit.v3i3.1264
Vercellis, C. (2009). Business Intelligence: Data Mining and Optimization for Decision Making. In Business Intelligence: Data Mining and Optimization for Decision Making. https://doi.org/10.1002/9780470753866
Widjiyati, N. (2021). Implementasi Algoritme Random Forest Pada Klasifikasi Dataset Credit Approval Implementation of Random Forest Algorithm in The Classification of Credit Approval Dataset. 1(1), 1–7. https://doi.org/10.25008/janitra.v1i1.118
Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., … Steinberg, D. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, Vol. 14, pp. 1–37. https://doi.org/10.1007/s10115-007-0114-2
Yasir, M., & Suraji, R. (2023). Perbandingan Metode Klasifikasi Naive Bayes, Decision, Tree, Random Forest Terhadap Analisis Sentimen Kenaikan Biaya Haji 2023 pada Media Sosial Youtube. Jurnal Cahaya Mandalika (JCM), 3(2), 180–192. https://doi.org/10.36312/jcm.v3i2.1520
Yogiek Indra Kurniawan, T. I. B. (2020). Klasifikasi Penentuan Pengajuan Kartu Kredit Menggunakan. Jurnal Ilmiah Matrik Universitas Bina Darma, 22(1), 73–82. https://doi.org/https://doi.org/10.33557/jurnalmatrik.v22i1.843
Yusuf, D., & Sestri, E. (2020). Metode Decision Tree Dalam Klasifikasi Kredit Pada Nasabah PT Bank Perkreditan Rakyat (Studi Kasus : PT BPR Lubuk Raya Mandiri). Jurnal Sistem Informasi (JUSIN), 1(1), 21–28. https://doi.org/10.32546/jusin.v1i1.855
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Indah Suryani
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.