Application of Social Network Analysis for Comparison and Ranking of Internet Service Providers

Authors

  • Tedy Setiadi Universitas Ahmad Dahlan
  • Gilang Mukharom Universitas Ahmad Dahlan
  • Beni Suhendra Universitas Ahmad Dahlan
  • Syauqi Bima Telkom University
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v6i2.280

Keywords:

Social Network Analysis, Network Properties, Sentiment Analysis, Internet Service Providers

Abstract

In this digital era, the Internet has become a basic necessity in life. This has had a significant impact on the growth of internet service provider (ISP) companies in Indonesia. Comparison and ranking of ISPs is needed to make it easier for users to choose services according to their needs as well as to encourage healthy competition between ISPs in improving their services. The problem is ranking ISPs using conventional methods (surveys) to obtain primary data is expensive and takes a long time. On the other hand, Social Network Analysis (SNA) is a method that has been widely used to understand customer desires by extracting information from social media. This information is in the form of User Generated Content (UGC), namely track records left by customers on social media. This research aims to measure the ISP rankings of Indihome, Biznet and FirstMedia using UGC data. The research method used is to collect consumer tweet data rapidly, carry out preprocessing to eliminate irrelevant data and apply SNA, including network structure analysis in the form of visualization and network property analysis with the Gephi application, as well as network content analysis in the form of sentiment analysis and WordCloud analysis. The number of dominant network properties and sentiment analysis calculates ISP ranking. Apart from that, the results of this SNA are in the form of recommendations for ISPs to improve services to customers.

Downloads

Download data is not yet available.

References

Barthélemy, M. (2004). Betweenness centrality in large complex networks. European Physical Journal B, 38(2), 163–168. https://doi.org/10.1140/epjb/e2004-00111-4

Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., & Wagner, D. (2008). On modularity clustering. IEEE Transactions on Knowledge and Data Engineering, 20(2), 172–188. https://doi.org/10.1109/TKDE.2007.190689

Bratawisnu, M. K., Putra, M. R. D., & Ignatio, W. (2018). Penentuan Top Brand Menggunakan Social Network Analysis pada e-commerce Tokopedia dan Bukalapak. Journal of Information Engineering and Educational Technology, 2(1), 1. https://doi.org/10.26740/jieet.v2n1.p1-5

Casas-Roma, J., Herrera-Joancomartí, J., & Torra, V. (2015). Anonymizing graphs: measuring quality for clustering. Knowledge and Information Systems, 44(3), 507–528. https://doi.org/10.1007/s10115-014-0774-7

Diannzah, D. M. (2021). Analisis Interaksi Pengguna Twitter Menggunakan Social Network Analysis Dan Topic Modelling Terkait Strategi Pemasaran E-Commerce [Universitas Islam Indonesia]. In Universitas Islam Indonesia. https://dspace.uii.ac.id/handle/123456789/38724

Fenton, A., Parry, K. D., Ahmed, W., & Chadwick, S. (2023). Understanding sporting brands and entrepreneurship using netnography and social network analysis. International Journal of Technology Transfer and Commercialisation, 20(1), 141. https://doi.org/10.1504/IJTTC.2023.129707

Hadiwinata, L. N., Murtiningsih, B. S. E., & Berto, A. R. (2023). Analisis Teks Dan Jaringan Promosi Media Sosial Youtube Mobil Listrik Ioniq 5 Menggunakan Metode Sna. Perspektif Komunikasi: Jurnal Ilmu Komunikasi Politik Dan Komunikasi Bisnis, 7(1), 1. https://doi.org/10.24853/pk.7.1.1-18

Hibatullah Faisal1, Arafat Febriandirza, F. N. H. (2024). Analisis Sentimen Terkait Ulasan Pada Aplikasi PLN Mobile Menggunakan Metode Support Vector Machine. KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), 5(1), 303–312.

Jin, Y., Matsuo, Y., & Ishizuka, M. (2009). Ranking companies on the web using social network mining. Studies in Computational Intelligence, 172, 137–151. https://doi.org/10.1007/978-3-540-88081-3_8

Li, X., Xu, G., Liu, C., Yu, W., Liu, Z., Wu, Z., & Yang, X. (2021). Higher-Order Multiple-Feature-based Community Evolution Model with Potential Applications in Criminal Network Investigation. Future Generation Computer Systems, 125, 364–375. https://doi.org/10.1016/j.future.2021.06.028

McCusker, K., & Gunaydin, S. (2015). Research using qualitative, quantitative or mixed methods and choice based on the research. Perfusion (United Kingdom), 30(7), 537–542. https://doi.org/10.1177/0267659114559116

Paulis, E. (2020). Using Social Network Analysis (SNA) to Study Members and Activists of Political Parties. Bulletin of Sociological Methodology/Bulletin de Méthodologie Sociologique, 147–148(1–2), 13–48. https://doi.org/10.1177/0759106320939886

Radiena, G., & Nugroho, A. (2023). Analisis Sentimen Berbasis Aspek Pada Ulasan Aplikasi Kai Access Menggunakan Metode Support Vector Machine. Jurnal Pendidikan Teknologi Informasi (JUKANTI), 6(1), 1–10. https://doi.org/10.37792/jukanti.v6i1.836

Setiadi, T., Yaakub, M. R., & Bakar, A. A. (2023). Community Detection Methods in Library ’ s Books and Borrowers Social Network Segmentation. Journal of Advances in Information Technology, 14(6), 1177–1185. https://doi.org/10.12720/jait.14.6.1177-1185

Sibarani, J. Y. B., Junaidi, A., Azis, M. A., Arifin, Y. T., & Puspitasar, D. (2022). Analisis Sentimen Produk Amazon Menggunakan Algoritma Naïve Bayes Pada Data Review Pelanggan. Jurnal Teknik Komputer AMIK BSI, 8(2), 174–180. https://doi.org/10.31294/jtk.v4i2

Sidauruk, N. B., & Riza, N. (2023). Sentimen Analisis Data Pengguna Terhadap KAI Access Systematic Literature Review. Jurnal Mahasiswa Teknik Informatika, 7(2), 1297–1303.

Soares, N. D., Braga, R., David, J. M. N., Siqueira, K. B., & Stroele, V. (2023). Data Analysis in Social Networks for Agribusiness: A Systematic Review. IEEE Access, 11, 8422–8432. https://doi.org/10.1109/ACCESS.2023.3237984

Soares, T. G., Aristo, A., Sinlae, J., & Herdiansah, A. (2024). Decision Support System for Selection of Internet Services Providers using the ROC and WASPAS Approach. 5(2), 346–356. https://doi.org/10.47065/josyc.v5i2.4892

Suradihardjo, G. P. D., Widarmanti, T., & Irawan, H. (2023). Measuring brand awareness of online travel agents using SNA method based on Twitter user interaction. Proceedings of The International Conference on Information Technology and Digital Applications 2021 (ICITDA 2021), 020010. https://doi.org/10.1063/5.0116740

Timoshenko, A., & Hauser, J. R. (2019). Identifying customer needs from user-generated content. Marketing Science, 38(1), 1–20. https://doi.org/10.1287/mksc.2018.1123

Zhang, Y., Shirakawa, M., Wang, Y., Li, Z., & Hara, T. (2022). Twitter-aided decision making: a review of recent developments. Applied Intelligence, 52(12), 13839–13854. https://doi.org/10.1007/s10489-022-03241-9

Downloads

Published

2024-03-11

How to Cite

Setiadi, T., Mukharom, G., Suhendra, B., & Bima, S. (2024). Application of Social Network Analysis for Comparison and Ranking of Internet Service Providers. Jurnal Riset Informatika, 6(2), 77–84. https://doi.org/10.34288/jri.v6i2.280

Issue

Section

Articles