Naive Bayes and Decision Tree Algorithms for BRI Life Sharia Insurance Product Classification
DOI:
https://doi.org/10.34288/jri.v5i4.246Keywords:
Decision Tree, Insurance, Naive BayesAbstract
Law 12 of 2012 mandates that the government increase access to higher education for high achievers and underprivileged people. One of the efforts to realize this is by providing KIP Lectures. To ensure that beneficiaries are eligible for KIP scholarships, it is necessary to classify scholarship recipients correctly using data mining classification techniques. The classification technique chosen is k-Nearest Neighbor (K-NN). K-NN is a classification method that relies heavily on the k parameter in carrying out classification. K-NN was applied to the KIP Scholarship applicant dataset at UIN Malang in 2022. The test scenario in this research is to compare the k-odd and k-even parameters to find the most optimal k value in K-NN. The highest accuracy value obtained by k-odd is 0.71 or 71% when k=9, and the highest for k-even is 0.67 or 67% when k=10. Using optimal k parameters is proven to improve k-NN performance. The K-NN algorithm with k-odd parameters, namely k=9, is the best method for classifying KIP scholarship recipients in this research. The results of this research can be considered in determining KIP scholarship recipients worthy of using K-NN.
Downloads
References
Akbar, F., Saputra, H. W., Maulaya, A. K., Hidayat, M. F., & Rahmaddeni, R. (2022). Implementasi Algoritma Decision Tree C4.5 dan Support Vector Regression untuk Prediksi Penyakit Stroke. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 2(2), 61–67. https://doi.org/10.57152/MALCOM.V2I2.426
Andarista, R. R., & Jananto, A. (2022). Penerapan Data Mining Algoritma C4.5 Untuk Klasifikasi Hasil Pengujian Kendaraan Bermotor. Jurnal Tekno Kompak, 16(2), 29–43. https://doi.org/10.33365/JTK.V16I2.1525
Elfaladonna, F., & Rahmadani, A. (2019). Analisa Metode Classification-Decission Tree dan Algoritma C. 45 untuk Memprediksi Penyakit Diabetes dengan Menggunakan Aplikasi Rapid Miner. SINTECH (Science and Information Technology) Journal, 2(1), 10–17. https://doi.org/10.31598/SINTECHJOURNAL.V2I1.293
Fatmawati, T., Kramanandita, R., & Miza, R. (2022). Rancangan Implementasi Enterprise Resource Planning (ERP) pada Sistem Pengelolaan Sales Order PT Jaya Mandiri Indotech. Jurnal Teknologi Dan Manajemen, 20(1), 33–44. https://doi.org/10.52330/JTM.V20I1.49
Fitri, E., Yuliani, Y., Rosyida, S., & Gata, W. (2020). Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine. Jurnal Transformatika, 18(1), 71–80. https://doi.org/10.26623/TRANSFORMATIKA.V18I1.2317
Herdiansah, A., Indra Borman, R., Nurnaningsih, D., Aristo, A., Sinlae, J., Ridlo, R., & Hakim, A. (2022). Klasifikasi Citra Daun Herbal Dengan Menggunakan Backpropagation Neural Networks Berdasarkan Ekstraksi Ciri Bentuk. JURIKOM (Jurnal Riset Komputer), 9(2), 388–395. https://doi.org/10.30865/JURIKOM.V9I2.4066
Hermanto, H., Mustopa, A., & Kuntoro, A. Y. (2020). Algoritma Klasifikasi Naive Bayes Dan Support Vector Machine Dalam Layanan Komplain Mahasiswa. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 5(2), 211-220. https://doi.org/10.33480/jitk.v5i2.1181
Mukaromah, E. (2020). Pemanfaatan Teknologi Informasi dan Komunikasi dalam Meningkatkan Gairah Belajar Siswa. Indonesian Journal of Education Management & Administration Review, 4(1), 175–182. https://doi.org/10.4321/IJEMAR.V4I1.4381
Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. J-SAKTI (Jurnal Sains Komputer Dan Informatika), 5(2), 697–711. https://doi.org/10.30645/J-SAKTI.V5I2.369
Penira, A., Samsudin, S., & Ikhwan, A. (2022). Data Mining Memprediksi Kecenderungan Calon Nasabah dalam Memilih Produk Asuransi PT AJS Bumiputera Medan. Infoman’s : Jurnal Ilmu-Ilmu Manajemen Dan Informatika, 16(1), 61–70. Retrieved from http://ejournal.stmik-sumedang.ac.id/index.php/infomans/article/view/403
Rachmawati, I. N. (2007). Pengumpulan Data Dalam Penelitian Kualitatif: Wawancara. Jurnal Keperawatan Indonesia, 11(1), 35–40. https://doi.org/10.7454/JKI.V11I1.184
Sari, V. R., Firdausi, F., & Azhar, Y. (2020). Perbandingan Prediksi Kualitas Kopi Arabika dengan Menggunakan Algoritma SGD, Random Forest dan Naive Bayes. Edumatic: Jurnal Pendidikan Informatika, 4(2), 1–9. https://doi.org/10.29408/edumatic.v4i2.2202
Sartika, D., & Sensuse, D. I. (2017). Perbandingan Algoritma Klasifikasi Naive Bayes, Nearest Neighbour, dan Decision Tree pada Studi Kasus Pengambilan Keputusan Pemilihan Pola Pakaian. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 3(2), 151–161. https://doi.org/10.35957/JATISI.V3I2.78
Setiyani, L., Wahidin, M., Awaludin, D., & Purwani, S. (2020). Analisis Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Data Mining Naïve Bayes : Systematic Review. Faktor Exacta, 13(1), 35–43. https://doi.org/10.30998/FAKTOREXACTA.V13I1.5548
Tandian, C., Laia, Y., & Saputra, A. (2019). Penerapan Data Mining Dalam Memprediksi Pemenang Klub Sepak Bola Pada Ajang Liga Champion Dengan Algoritma C.45. https://doi.org/10.34012/jusikom.v2i2.397
Tangkelayuk, A., & Mailoa, E. (2022). The Klasifikasi Kualitas Air Menggunakan Metode KNN, Naïve Bayes, dan Decision Tree. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 9(2), 1109–1119. https://doi.org/10.35957/JATISI.V9I2.2048
Ubaedi, I., & Djaksana, Y. M. (2022). Optimasi Algoritma C4. 5 Menggunakan Metode Forward Selection Dan Stratified Sampling Untuk Prediksi Kelayakan Kredit. JSiI (Jurnal Sistem Informasi), 9(1), 17–26. https://doi.org/10.30656/JSII.V9I1.3505
Yudistira, N. (2021). Peran Big Data dan Deep Learning untuk Menyelesaikan Permasalahan Secara Komprehensif. EXPERT: Jurnal Manajemen Sistem Informasi Dan Teknologi, 11(2), 78–89. https://doi.org/10.36448/expert.v11i2.2063
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Rika Astuti

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.










