Sentiment Analysis of Telemedicine Applications on Twitter Using Lexicon-Based and Naive Bayes Classifier Methods


  • Arid Hasan Sekolah Tinggi Teknologi Wastukancana
  • Yudhi Raymond Ramadhan Sekolah Tinggi Teknologi Wastukancana
  • Minarto Minarto Sekolah Tinggi Teknologi Wastukancana
(*) Corresponding Author



Lexicon Based, Naive Bayes Classifier, Sentiment Analysis, Telemedicine Applications


Since the onset of the COVID-19 pandemic in Indonesia, many people have turned to telemedicine programs as an alternative to minimize social interactions, opting for consultations from the safety of their homes using smartphones and internet connectivity. Given the necessity for physical distancing and avoiding crowded places, these applications have become indispensable substitutes for in-person medical consultations. Numerous apps facilitating access to healthcare services have been introduced in Indonesia, ranging from business startups to initiatives by the Ministry of Health. Telemedicine can potentially revolutionize healthcare in Indonesia, addressing critical health challenges. A significant issue within Indonesia's healthcare system is the scarcity of doctors and their uneven distribution. With only four doctors per 10,000 people, this figure falls far below the WHO guideline of 10 doctors per 1,000. Sentiment analysis of these applications was conducted to evaluate how telemedicine applications meet public needs and offer an alternative solution. Lexicon-based and naive Bayes methods were employed to classify tweet data into positive, neutral, and negative sentiments. The results revealed 908 positive tweets, 172 negative tweets, and 168 neutral tweets, indicating predominantly positive public perceptions of telemedicine applications. The naive Bayes classifier exhibited a 74% accuracy rate, with a precision of 98% and a recall of 86%. These findings underscore the positive impact and acceptance of telemedicine applications among the Indonesian populace, emphasizing their significance in augmenting the nation's healthcare landscape.


Download data is not yet available.


Annur. (2022). Layanan Telemedicine yang Paling Banyak Digunakan di Indonesia, Apa Saja? Databoks.

Chatrina Siregar, N., Ruli, R., Siregar, A., Yoga, ; M, & Sudirman, D. (2020). Implementasi Metode Naive Bayes Classifier (NBC) Pada Komentar Warga Sekolah Mengenai Pelaksanaan Pembelajaran Jarak Jauh (PJJ). In Jurnal Teknologia Aliansi Perguruan Tinggi (APERTI) BUMN (Vol. 3, Issue 1).

Cikania, R. N. (2021). Implementasi algoritma naive bayes classifier dan support machine pada klasifikasi sentimen review layanan telemedicine halodoc. Jambura Journal of Probability and Statistics, 2(2), 96–104.

Dikiyanti, T. D., Rukmi, A. M., & Irawan, M. I. (2021). Sentiment analysis and topic modeling of BPJS Kesehatan based on twitter crawling data using Indonesian Sentiment Lexicon and Latent Dirichlet Allocation algorithm. Journal of Physics: Conference Series, 1821(1).

Eka Sembodo, J., Budi Setiawan, E., & Abdurahman Baizal, Z. (2016). Data Crawling Otomatis pada Twitter. 11–16.

Gormantara, A. (2020). Analisis Sentimen Terhadap New Normal Era di Indonesia pada Twitter Menggunakan Metode Support Vector Machine.

Kemkes. (2021). Aplikasi Telemedicine Berpotensi Merevolusi Pelayanan Kesehatan di Indonesia. Kemkes.

Kurniawan, A., & Adinugroho, S. (2019). Analisis Sentimen Opini Film Menggunakan Metode Naïve Bayes dan Lexicon Based Features (Vol. 3, Issue 9).

Laurensz, B., Sentimen, A., & Sediyono, E. (2021). Analisis Sentimen Masyarakat terhadap Tindakan Vaksinasi dalam Upaya Mengatasi Pandemi Covid-19 (Analysis of Public Sentiment on Vaccination in Efforts to Overcome the Covid-19 Pandemic). In Jurnal Nasional Teknik Elektro dan Teknologi Informasi | (Vol. 10, Issue 2).

Mahendrajaya, R., Buntoro, G. A., & Setyawan, M. B. (2019). url : Analisis sentimen pengguna gopay menggunakan metode lexicon based dan suppoort vector machine.

Rachman, R., Handayani, R. N., & Artikel, I. (2021). Klasifikasi Algoritma Naive Bayes Dalam Memprediksi Tingkat Kelancaran Pembayaran Sewa Teras UMKM. JURNAL INFORMATIKA, 8(2).

Riyanto, A. (2021). Faktor-Faktor yang Mempengaruhi Pelaksanaan Telemedicine (Systematic Review). Jurnal Manajemen Informasi Kesehatan Indonesia, 9(2), 174.

Salehudin Basryah, E., Erfina, A., & Warman, C. (2021). analisis sentimen aplikasi dompet digital di era 4.0 pada masa pademi covid 19 di play store menggunakan algoritma naive bayes classifier.

Taufiq Anwar, M., Riandhita Arief Permana, D., STMI Jakarta, P., Sistem Informasi Industri Otomotif, P., Letjen Suprapto No, J., & Pusat, J. (2023). Analisis Sentimen Masyarakat Indonesia Terhadap Produk Kendaraan Listrik Menggunakan VADER. 10(1), 783–792.

Yuniar, E., Utsalinah, D. S., & Wahyuningsih, D. (2022). Implementasi Scrapping Data Untuk Sentiment Analysis Pengguna Dompet Digital dengan Menggunakan Algoritma Machine Learning. Jurnal Janitra Informatika Dan Sistem Informasi, 2(1), 35–42.




How to Cite

Hasan, A., Ramadhan, Y. R., & Minarto, M. (2023). Sentiment Analysis of Telemedicine Applications on Twitter Using Lexicon-Based and Naive Bayes Classifier Methods. Jurnal Riset Informatika, 5(4), 481–490.