Comparison of Conventional Machine Learning and Deep Neural Network Algorithms in the Prediction of Monkey-Pox

Authors

  • Cucu Ika Agustyaningrum Universitas Bina Sarana Informatika
  • Rizka Dahlia Universitas Bina Sarana Informatika
  • Omar Pahlevi Universitas Bina Sarana Informatika
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v5i3.217

Keywords:

Conventional Machine Learning, Data Mining, Deep Neural Network, Monkeypox

Abstract

Smallpox syndrome, or monkeypox, is an uncommon zoonotic viral infection brought on by the monkeypox virus, which belongs to the genus Orthopoxvirus and family Poxviridae.  Injury-related mortality in primates ranges from 1 to 10%.  Data mining is a method for analyzing data.  Deep neural networks and traditional machine learning methods are used in data analysis.  The Python programming language is used during the comparison procedure of this research algorithm to generate values for accuracy, f1 score, precision, recall, ROC, and AUC.  The test results demonstrate that using sigmoid activation function parameters, the deep neural network algorithm's accuracy is 70.08%, F1 score is 79.18%, precision is 68.59%, recall is 62.65%, and AUC is 62.65%.  Compared to conventional machine learning algorithms, the adagrad optimizer has a higher value with a learning rate of 0.01 and 0.2 dropouts.  The conventional machine learning model algorithm has the best xgboost, F1 score, precision, recall, and AUC scores compared to other approaches: 64.40%, 64.45%, and 78.14%.  According to these numbers, the average fairness disparity between deep neural network algorithms and traditional machine learning is 5.68%, F1 score is 13.79%, precision is 4.14%, recall is 1.75%, and AUC is 1.75%.

Downloads

Download data is not yet available.

References

Agustyaningrum, C. I., Gata, W., Nurfalah, R., Radiyah, U., & Maulidah, M. (2020). Komparasi Algoritma Naive Bayes, Random Forest Dan Svm Untuk Memprediksi Niat Pembelanja Online. Jurnal Informatika, 20(2), 164–173. https://doi.org/10.30873/ji.v20i2.2402

Ahsan, M. M., Uddin, M. R., Farjana, M., Sakib, A. N., Momin, K. Al, & Luna, S. A. (2022). Image Data collection and implementation of the deep learning-based model in detecting Monkeypox disease using modified VGG16. Retrieved from http://arxiv.org/abs/2206.01862

As Sarofi, M. A., Irhamah, I., & Mukarromah, A. (2020). Identifikasi Genre Musik dengan Menggunakan Metode Random Forest. Jurnal Sains Dan Seni ITS, 9(1), 79–86. https://doi.org/10.12962/j23373520.v9i1.51311

Beghriche, T., Djerioui, M., Brik, Y., Attallah, B., & Belhaouari, S. B. (2021). An Efficient Prediction System for Diabetes Disease Based on Deep Neural Network. Complexity, 2021. https://doi.org/10.1155/2021/6053824

Berthet, N., Descorps-Declère, S., Besombes, C., Curaudeau, M., Nkili Meyong, A. A., Selekon, B., … Nakoune, E. (2021). Genomic history of human monkey pox infections in the Central African Republic between 2001 and 2018. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-92315-8

Cucu Ika Agustyaningrum, Haris, M., Aryanti, R., & Misriati, T. (2021). Online Shopper Intention Analysis Using Conventional Machine Learning And Deep Neural Network Classification Algorithm. Jurnal Penelitian Pos Dan Informatika, 11(1), 89–100. https://doi.org/10.17933/jppi.v11i1.341

Eid, M. M., El-Kenawy, E. S. M., Khodadadi, N., Mirjalili, S., Khodadadi, E., Abotaleb, M., … Khafaga, D. S. (2022). Meta-Heuristic Optimization of LSTM-Based Deep Network for Boosting the Prediction of Monkeypox Cases. Mathematics, 10(20), 1–20. https://doi.org/10.3390/math10203845

Elujide, I., Fashoto, S. G., Fashoto, B., Mbunge, E., Folorunso, S. O., & Olamijuwon, J. O. (2021). Application of deep and machine learning techniques for multi-label classification performance on psychotic disorder diseases. Informatics in Medicine Unlocked, 23, 100545. https://doi.org/10.1016/j.imu.2021.100545

Gadekallu, T. R., Khare, N., Bhattacharya, S., Singh, S., Maddikunta, P. K. R., & Srivastava, G. (2020). Deep neural networks to predict diabetic retinopathy. Journal of Ambient Intelligence and Humanized Computing, (0123456789). https://doi.org/10.1007/s12652-020-01963-7

Gessain, A., Nakoune, E., & Yazdanpanah, Y. (2022). Monkeypox. New England Journal of Medicine, 387(19), 1783–1793. https://doi.org/10.1056/NEJMra2208860

Gultom, S. I. (2020). Implementasi Data Mining Menentukan Pola Hidup Sehat Bagi Pengguna KB Menggunakan Algoritma Adaboost (Studi Kasus :Dinas Serdang Bedagai). Informasi Dan Teknologi Ilmiah (INTI), 7(3), 298–304. Retrieved from https://www.ejurnal.stmik-budidarma.ac.id/index.php/inti/article/view/2405

Hraib, M., Jouni, S., Albitar, M. M., Alaidi, S., & Alshehabi, Z. (2022). The outbreak of monkeypox 2022: An overview. Annals of Medicine and Surgery, 79, 104069. https://doi.org/10.1016/j.amsu.2022.104069

Kabir, M. R., Ashraf, F. Bin, & Ajwad, R. (2019). Analysis of different predicting model for online shoppers’ purchase intention from empirical data. 2019 22nd International Conference on Computer and Information Technology, ICCIT 2019, (March 2020). https://doi.org/10.1109/ICCIT48885.2019.9038521

Koto-te-Nyiwa Ngbolua, Guy Kumbali Ngambika, Blaise Mbembo-wa-Mbembo, Kohowe Pagerezo Séraphin, Kogana Kapalata Fabrice, Gédéon Ngiala Bongo, … Djolu Djoza Ruphin. (2020). First Report on Three Cases of Monkey pox in Nord Ubangi Province (Democratic Republic of the Congo). Britain International of Exact Sciences (BIoEx) Journal, 2(1), 120–125. https://doi.org/10.33258/bioex.v2i1.117

Leonardo, R., Pratama, J., & Chrisnatalis, C. (2020). Perbandingan Metode Random Forest Dan Naïve Bayes Dalam Prediksi Keberhasilan Klien Telemarketing. Jurnal Teknologi Dan Ilmu Komputer Prima (Jutikomp), 3(2), 1–5.

Nabipour, M., Nayyeri, P., Jabani, H., Shahab, S., & Mosavi, A. (2020). Predicting Stock Market Trends Using Machine Learning and Deep Learning Algorithms Via Continuous and Binary Data; A Comparative Analysis. IEEE Access, 8, 150199–150212. https://doi.org/10.1109/ACCESS.2020.3015966

Nurachim, R. I. (2019). Pemilihan Model Prediksi Indeks Harga Saham Yang Dikembangkan Berdasarkan Algoritma Support Vector Machine(Svm) Atau Multilayer Perceptron(Mlp) Studi Kasus : Saham Pt Telekomunikasi Indonesia Tbk. Jurnal Teknologi Informatika Dan Komputer, 5(1), 29–35. https://doi.org/10.37012/jtik.v5i1.243

Panggabean, D. S. O., Buulolo, E., & Silalahi, N. (2020). Penerapan Data Mining Untuk Memprediksi Pemesanan Bibit Pohon Dengan Regresi Linear Berganda. JURIKOM (Jurnal Riset Komputer), 7(1), 56. https://doi.org/10.30865/jurikom.v7i1.1947

Partogi, Y., & Pasaribu, A. (2022). Perancangan Metode Decision Tree Terhadap Sistem Perpustakaan STMIK Kuwera. Jurnal Sistem Informasi Dan Teknologi (SINTEK), 1(2), 20–25. https://doi.org/10.56995/sintek.v1i2.4

Ratnawati, L., & Sulistyaningrum, D. R. (2020). Penerapan Random Forest untuk Mengukur Tingkat Keparahan Penyakit pada Daun Apel. Jurnal Sains Dan Seni ITS, 8(2), A71–A77. https://doi.org/10.12962/j23373520.v8i2.48517

Rizk, J. G., Lippi, G., Henry, B. M., Forthal, D. N., & Rizk, Y. (2022). Prevention and Treatment of Monkeypox. Drugs, 82(9), 957–963. https://doi.org/10.1007/s40265-022-01742-y

Saha, S., Chakraborty, T., Bin Sulaiman, R., & Paul, T. (2023). A Comparative Analysis of CNN-Based Pretrained Models for the Detection and Prediction of Monkeypox. ArXiv:2302.10277, 1–10. https://doi.org/10.48550/arXiv.2302.10277

Shuvo, P. A., Roy, A., Dhawan, M., Chopra, H., & Emran, T. Bin. (2022). Recent outbreak of monkeypox: Overview of signs, symptoms, preventive measures, and guideline for supportive management. International Journal of Surgery, 105, 106877. https://doi.org/10.1016/j.ijsu.2022.106877

Xu, Y., Yang, J., Zhao, S., Wu, H., & Sawan, M. (2020). An End-to-End Deep Learning Approach for Epileptic Seizure Prediction. Proceedings - 2020 IEEE International Conference on Artificial Intelligence Circuits and Systems, AICAS 2020, 266–270. https://doi.org/10.1109/AICAS48895.2020.9073988

Yu, Z., Zhu, B., Qiu, Q., Ding, N., Wu, H., & Shen, Z. (2023). Genitourinary Symptoms Caused by Monkeypox Virus: What Urologists Should Know. European Urology, 83(2), 180–182. https://doi.org/10.1016/j.eururo.2022.11.005

Zulfikar, W. B., & Lukman, N. (2016). Perbandingan Naive Bayes Classifier Dengan Nearest Neighbor Untuk Identifikasi Penyakit Mata. Jurnal Online Informatika, 1(2), 82–86. https://doi.org/10.15575/join.v1i2.33

Downloads

Published

2023-06-23

How to Cite

Agustyaningrum, C. I., Dahlia, R., & Pahlevi, O. (2023). Comparison of Conventional Machine Learning and Deep Neural Network Algorithms in the Prediction of Monkey-Pox. Jurnal Riset Informatika, 5(3), 253–262. https://doi.org/10.34288/jri.v5i3.217

Issue

Section

Articles