INDONESIAN LANGUAGE CLASSIFICATION OF CYBERBULLING WORDS ON TWITTER USING ADABOOST AND NEURAL NETWORK METHODS

  • Kristiawan Nugroho (1*) AMIK Jakarta Teknologi Cipta

  • (*) Corresponding Author

Keywords: Cyberbulling, Machine Learning, Adaboost, Neural Network

Abstract

Cyberbullying is a very interesting research topic because of the development of communication technology, especially social media, which causes negative consequences where people can bully each other, causing victims and even suicide. The phenomenon of Cyberbullying detection has been widely researched using various approaches. In this study, the AdaBoost and Neural Network methods were used, which are machine learning methods in classifying Cyberbullying words from various comments taken from Twitter. Testing the classification results with these two methods produces an accuracy rate of 99.5% with Adaboost and 99.8% using the Neural Network method. Meanwhile, when compared to other methods, the results obtained an accuracy of 99.8% with SVM and Decision Tree, 99.5% with Random Forest. Based on the research results of the Neural Network method, SVM and Decision Tree are tested methods in detecting the word cyberbullying proven by achieving the highest level of accuracy in this study

Downloads

Download data is not yet available.

References

Bre, F., Gimenez, J. M., & Fachinotti, V. D. (2018). Prediction of wind pressure coefficients on building surfaces using artificial neural networks. Energy and Buildings, 158(April), 1429–1441. https://doi.org/10.1016/j.enbuild.2017.11.045

Candra, R. M., & Rozana, A. N. (2020). Klasifikasi Komentar Bullying pada Instagram Menggunakan Metode K-Nearest Neighbor. IT Journal Research and Development, 5(1), 45–52. Retrieved from https://journal.uir.ac.id/index.php/ITJRD/article/view/4962

Dewi, H. A., Suryani, & Sriyati, A. (2020). Faktor-Faktor Yang Memengaruhi Cyberbullying Pada Remaja : A Systematic Review. Journal of Nursing Care, 3(2), 128–141. Retrieved from http://jurnal.unpad.ac.id/jnc/article/view/24477

Hani, J., Nashaat, M., Ahmed, M., Emad, Z., Amer, E., & Mohammed, A. (2019). Social Media Cyberbullying Detection using Machine Learning. International Journal of Advanced Computer Science and Applications(IJACSA), 10(5), 703–707. https://doi.org/10.14569/IJACSA.2019.0100587

Listiana, E., & Muslim, M. A. (2017). Penerapan Adaboost Untuk Klasifikasi Support Vector Machine Guna Meningkatkan Akurasi Pada Diagnosa Chronic Kidney Disease. Prosiding Seminar Nasional Teknologi Dan Informatika UMK 2017, 875–881. Retrieved from https://jurnal.umk.ac.id/index.php/SNA/article/view/1463

Luqyana, W. A., Cholissodin, I., & Perdana, R. S. (2018). Analisis Sentimen Cyberbullying pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(11), 4704–4713. Retrieved from http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/3051

Malihah, Z., & Alfiasari, A. (2018). Perilaku Cyberbullying pada Remaja dan Kaitannya dengan Kontrol Diri dan Komunikasi Orang Tua. Jurnal Ilmu Keluarga Dan Konsumen, 11(2), 145–156. https://doi.org/10.24156/jikk.2018.11.2.145

Maulana, F. A., & Ernawati, I. (2020). Analisa Sentimen Cyberbullying Di Jejaring Sosial Twitter Dengan Algoritma Naïve Bayes. Seminar Nasional Mahasiswa Ilmu Komputer Dan Aplikasinya (SENAMIKA, 529–538. Jakarta: Universitas Pembangunan Nasional Veteran Jakarta. Retrieved from https://conference.upnvj.ac.id/index.php/senamika/article/view/619

Maulida, I., Suyatno, A., Rahmania Hatta, H., & Mulawarman, U. (2016). Seleksi Fitur Pada Dokumen Abstrak Teks Bahasa Indonesia Menggunakan Metode Information Gain. Oktober 2016 Ijccs, 17(2), 1–5.

Pardede, J., Miftahuddin, Y., & Kahar, W. (2020). Deteksi Komentar Cyberbullying Pada Media Sosial Berbahasa Inggris Menggunakan Naïve Bayes Classification. 7(1), 46–54.

Purnamasari, N. M. G. D., Fauzi, M. A., Indriarti, & Dewi, L. S. (2018). Identifikasi Tweet Cyberbullying pada Aplikasi Twitter menggunakan Metode Support Vector Machine ( SVM ) dan Information Gain ( IG ) sebagai Seleksi Fitur. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(11), 5326–5332.

Razak, A., & Riksakomara, E. (2017). Peramalan Jumlah Produksi Ikan dengan Menggunakan Backpropagation Neural Network (Studi Kasus: UPTD Pelabuhan Perikanan Banjarmasin. Jurnal Teknik ITS, 6(1), 142–148. https://doi.org/10.12962/j23373539.v6i1.22129

Saputra, I., & Rosiyadi, D. (2019). Perbandingan Kinerja Algoritma K-Nearest Neighbor, Naïve Bayes Classifier dan Support Vector Machine dalam Klasifikasi Tingkah Laku Bully pada Aplikasi Whatsapp. Faktor Exacta, 12(2), 101–111. Retrieved from https://journal.lppmunindra.ac.id/index.php/Faktor_Exacta/article/view/4181

Talpur, B. A., & O’Sullivan, D. (2020). Cyberbullying severity detection: A machine learning approach. PLoS ONE, 15(10 October), 1–19. https://doi.org/10.1371/journal.pone.0240924

Triyono, T., & Rimadani, R. (2019). Dampak Cyberbullying Di Media Sosial Pada Remaja Dan Implikasinya Terhadap Pelayanan Bimbingan Dan Konseling (Studi Kasus pada Klien X di Padang Utara Kota Padang). NeoKonseling, 1(1), 1–5. Retrieved from http://neo.ppj.unp.ac.id/index.php/neo/article/view/96

Utami, Y. C. (2014). Cyberbullying di Kalangan Remaja (Studi tentang Korban Cyberbullying di Kalangan Remaja di Surabaya). Universitas Airlangga, 3(3), 1–10. Retrieved from http://journal.unair.ac.id/download-fullpapers-kmnts73d7a00d3dfull.pdf

Published
2021-03-01
How to Cite
Nugroho, K. (2021). INDONESIAN LANGUAGE CLASSIFICATION OF CYBERBULLING WORDS ON TWITTER USING ADABOOST AND NEURAL NETWORK METHODS. Jurnal Riset Informatika, 3(2), 93-100. https://doi.org/10.34288/jri.v3i2.191
Article Metrics

Abstract viewed = 63 times
PDF downloaded = 41 times