Implementation of the K-Means Clustering for Teacher Performance Assessment Grouping (PKG) at MI Bani Hasyim Cerme
DOI:
https://doi.org/10.34288/jri.v5i1.180Keywords:
teacher, teacher performance assessment, K-Means clustering, MI Bani Hasyim, web systemAbstract
Evaluation of teacher performance at MI Bani Hasyim Cerme still uses the manual method. Using office applications such as excel and word results in a significant accumulation of data that makes it difficult for school principals to calculate scores and evaluate the results of clustering or teacher performance scores, so it is wasteful of energy, time, and cost. The k-Means clustering method is expected to facilitate the clustering process of teacher performance values as a source of information and make it easy for school principals to classify teacher performance results. This research aims to obtain clustering values on teacher performance assessment data and to replace the teacher performance assessment system at MI Bani Hasyim, which was previously carried out conventionally into a web-based system. The results of this study are the clustering values of teacher performance assessment and a web-based teacher performance appraisal system. It is expected to facilitate the process of evaluating teacher performance in the Bani Hasyim primary school in the future.
Downloads
References
Hung, M. C., Wu, J., Chang, J. H., & Yang, D. L. (2005). An efficient k-means clustering algorithm using simple partitioning. Journal of Information Science and Engineering, 21(6), 1157–1177.
Imantika, D., Bachtiar, F. A., & Rokhmawati, R. I. (2019). Penerapan metode k-means clustering dan analytical hierarchy process (ahp) untuk pengelompokan kinerja guru dan karyawan pada sma brawijaya smart school. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer J-PTIIK, 3(8), 7382–7390. http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/5958
Lopis, M. Y. (2016). Rancang Bangun Sistem Penilaian Kinerja Guru Studi Kasus : SMK N 1 Bancak Peneliti : Program Studi Pendidikan Teknik Informatika dan Komputer Fakultas Teknologi Informasi Universitas Kristen Satya Wacana. 702011057.
Madhulatha, S. (2012). An overview of clustering methods. In IOSR Journal of Engineering (Vol. 2, Issue 4, pp. 719–725). https://doi.org/https://doi.org/10.48550/arXiv.1205.1117
Muhiddinur, K. (2019). Guru : Suatu Kajian Teoritis dan Praktis (viii). AURA. http://repo.iainbukittinggi.ac.id/id/eprint/131
Ndehedehe, C., Simeon, O., & Ekpa, A. (2013). Spatial Image Data Mining Using K-Means Analysis: A Case Study of Uyo Capital City, Nigeria. International Journal of Advanced Research, 1(8), 1–6.
Nurzahputra, A., Muslim, M. A., & Khusniati, M. (2017). Penerapan Algoritma K-Means Untuk Clustering Penilaian Dosen Berdasarkan Indeks Kepuasan Mahasiswa. Techno.Com, 16(1), 17–24. https://doi.org/10.33633/tc.v16i1.1284
Ong, J. O. (2013). Implementasi Algotritma K-means clustering untuk menentukan strategi marketing president university. Jurnal Ilmiah Teknik Industri, vol.12, no(juni), 10–20. https://doi.org/https://doi.org/10.23917/jiti.v12i1.651
Panjaitan, M., & Sitompul, D. (2015). Implementasi Algoritma K-Means Dan Analytic Hierarchy Process ( AHP ) Untuk Klasterisasi Guru Dan Memilih Guru Terbaik ( Studi Kasus : SMA Santo Yoseph Medan ). Fasilkom-Ti Usu, 1–13.
Pribadi, W. W., Yunus, A., & Sartika Wiguna, A. (2022). Perbandingan Metode K-Means Euclidean Distance Dan Manhattan Distance Pada Penentuan Zonasi Covid-19 Di Kabupaten Malang. Jurnal Mahasiswa Teknik Informatika), 6(2), 493–500.
Saranya, & Punithavalli. (2011). An Efficient Centroid Selection Algorithm for K-Means Clustering. International Journal of Management, IT and Engineering, 130–140.
Sartika, D., & Jumadi, J. (2019). Seminar Nasional Teknologi Komputer & Sains (SAINTEKS) Clustering Penilaian Kinerja Dosen Menggunakan Algoritma K-Means (Studi Kasus: Universitas Dehasen Bengkulu). 703–709. https://seminar-id.com/semnas-sainteks2019.html
Schuh, G., Reinhart, G., Prote, J. P., Sauermann, F., Horsthofer, J., Oppolzer, F., & Knoll, D. (2019). Data mining definitions and applications for the management of production complexity. Procedia CIRP, 81, 874–879. https://doi.org/10.1016/j.procir.2019.03.217
Sukrianto, D. (2016). Penerapan Data Mining Untuk Kinerja Dosen Menggunakan Metode K–Means Clustering (Studi Kasus Di Amik Mahaputra Riau). Jurnal PI-Cache, 5, No 1(Dm), 54–63.
Yaniar, N. S. (2011). Perbandingan Ukuran Jarak pada Proses Pengenalan Wajah Berbasis Principal Component Analysis ( PCA ). Proceeding Seminar Tugas Akhir Jurusan Teknik Elektro FTI‐ITS, 1–6.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Bagus Firmansyah, Umi Chotijah

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.










