IMAGE ENHANCEMENT ON OBJECT DETECTION USING L0 GRADIENT PRIOR

Authors

  • Sunario Megawan Universitas Mikroskil
  • Hernawati Gohzali Universitas Mikroskil
  • Apriyanto Halim Universitas Mikroskil
(*) Corresponding Author

DOI:

https://doi.org/10.34288/jri.v4i1.142

Keywords:

Image Enhancement, object detection

Abstract

Abstract

Object detection is a technique used to retrieve certain parts of the image. The part can be in the form of scenery, people, or other objects. At the time of object detection, the image obtained can experience a decrease in image quality which can be caused by weather factors, namely fog, smoke, dust, rain, and others. A decrease in the quality of the image can result in errors in classification and the inability to recognize objects in the image. Therefore, the process of improving image quality becomes very important to do at the pre-processing stage in detecting image objects. The focus of the problem to be solved in this study is the return of a blurred image using L0 Gradient Prior. The results showed that the application of L0 Gradient Prior in restoring a blurred image can increase the number of objects that can be detected by the object detection system.

Downloads

Download data is not yet available.

References

Abbas, S. M., & Singh, S. N. (2018). Region-based Object Detection and Classification using Faster R-CNN. 2018 4th International Conference on Computational Intelligence & Communication Technology (CICT), 1–6. Ghaziabad: IEEE. https://doi.org/10.1109/CIACT.2018.8480413

Anger, J., Facciolo, G., & Delbracio, M. (2019). Blind Image Deblurring using the l0 Gradient Prior. IPOL Journal · Image Processing On Line, 9, 124–142. https://doi.org/doi.org/10.5201/ipol.2019.243

Bahnsen, C. H., & Moeslund, T. B. (2018, September 21). AAU RainSnow Traffic Surveillance Dataset. Retrieved January 11, 2022, from Kaggle website: https://www.kaggle.com/aalborguniversity/aau-rainsnow/metadata

Borel-Donohue, C. C., & Young, S. S. (2019). Image quality and super resolution effects on object recognition using deep neural networks. Https://Doi.Org/10.1117/12.2518524, 11006, 596–604. Baltimore: SPIE. https://doi.org/10.1117/12.2518524

Cai, W., Li, J., Xie, Z., Zhao, T., & Lu, K. (2018). Street object detection based on faster R-CNN. Chinese Control Conference, CCC, 2018-July, 9500–9503. https://doi.org/10.23919/CHICC.2018.8482613

Chandan, G., Jain, A., Jain, H., & Mohana. (2018). Real Time Object Detection and Tracking Using Deep Learning and OpenCV. Proceedings of the International Conference on Inventive Research in Computing Applications, ICIRCA 2018, 1305–1308. https://doi.org/10.1109/ICIRCA.2018.8597266

Gavrilescu, R., Zet, C., Fosalau, C., Skoczylas, M., & Cotovanu, D. (2018). Faster R-CNN:an Approach to Real-Time Object Detection. EPE 2018 - Proceedings of the 2018 10th International Conference and Expositions on Electrical And Power Engineering, 165–168. https://doi.org/10.1109/ICEPE.2018.8559776

Hasirlioglu, S., Reway, F., Klingenberg, T., Riener, A., & Huber, W. (2019). Raindrops on the windshield: Performance assessment of camera-based object detection. 2019 IEEE International Conference on Vehicular Electronics and Safety, ICVES 2019. https://doi.org/10.1109/ICVES.2019.8906344

Pan, J., Sun, D., Pfister, H., & Yang, M. H. (2018). Deblurring Images via Dark Channel Prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(10), 2315–2328. https://doi.org/10.1109/TPAMI.2017.2753804

Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031

Roy, S. D., & Bhowmik, M. K. (2021). Annotation and Benchmarking of a Video Dataset under Degraded Complex Atmospheric Conditions and Its Visibility Enhancement Analysis for Moving Object Detection. IEEE Transactions on Circuits and Systems for Video Technology, 31(3), 844–862. https://doi.org/10.1109/TCSVT.2020.2991191

Vidal, R. G., Banerjee, S., Grm, K., Struc, V., & Scheirer, W. J. (2018). UG2: A video benchmark for assessing the impact of image restoration and enhancement on automatic visual recognition. Proceedings - 2018 IEEE Winter Conference on Applications of Computer Vision, WACV 2018, 2018-January, 1597–1606. https://doi.org/10.1109/WACV.2018.00177

Wu, W., Yin, Y., Wang, X., & Xu, D. (2019). Face detection with different scales based on faster R-CNN. IEEE Transactions on Cybernetics, 49(11), 4017–4028. https://doi.org/10.1109/TCYB.2018.2859482

Zhang, J., Karkee, M., Zhang, Q., Zhang, X., Yaqoob, M., Fu, L., & Wang, S. (2020). Multi-class object detection using faster R-CNN and estimation of shaking locations for automated shake-and-catch apple harvesting. Computers and Electronics in Agriculture, 173, 105384. https://doi.org/10.1016/J.COMPAG.2020.105384

Zhou, K., Zhuang, P., Xiong, J., Zhao, J., & Du, M. (2020). Blind Image Deblurring with Joint Extreme Channels and L0-Regularized Intensity and Gradient Priors. Proceedings - International Conference on Image Processing, ICIP, 2020-October, 873–877. https://doi.org/10.1109/ICIP40778.2020.9191010

Downloads

Published

2021-12-14

How to Cite

Megawan, S., Gohzali, H., & Halim, A. (2021). IMAGE ENHANCEMENT ON OBJECT DETECTION USING L0 GRADIENT PRIOR. Jurnal Riset Informatika, 4(1), 87–92. https://doi.org/10.34288/jri.v4i1.142