CLASSIFICATION OF VEHICLE TYPES USING BACKPROPAGATION NEURAL NETWORKS WITH METRIC AND ECCENTRICITY PARAMETERS
DOI:
https://doi.org/10.34288/jri.v4i1.139Keywords:
backpropagation, metrics, eccentricity,, artificial neural network, vehicle classificationAbstract
One of the efforts to break down traffic jams is to establish special lanes that can be passed by two, four, or more wheeled vehicles. By being able to recognize the type of vehicle can reduce congestion. Citran based vehicle classification helps in providing information about the vehicle type. This study aims to classify the type of vehicle using a backpropagation neural network algorithm. The vehicle image can be recognized based on its shape, then the backpropagation neural network algorithm will be supported by metric and eccentricity parameters to perform feature extraction. Then from the results of feature extraction with metric parameters and eccentricity, the object will be classified using a backpropagation neural network algorithm. The test results show an accuracy of 87.5%. This shows the algorithm can perform classification well.
Downloads
References
Borman, R. I., & Purwanto, Y. (2019). Impelementasi Multimedia Development Life Cycle pada Pengembangan Game Edukasi. JEPIN (Jurnal Edukasi Dan Penelitian Informatika)(Jurnal Edukasi Dan Penelitian Informatika), 5(2), 119–124.
Borman, R. I., Putra, Y. P., Fernando, Y., Kurniawan, D. E., Prasetyawan, P., & Ahmad, I. (2018). Designing an Android-based Space Travel Application Trough Virtual Reality for Teaching Media. Proceedings of the 2018 International Conference on Applied Engineering, ICAE. https://doi.org/10.1109/INCAE.2018.8579394
Chen, Y., Song, L., Liu, Y., Yang, L., & Li, D. (2020). A Review of the Artificial Neural Network Models for Water Quality Prediction. Applied Sciences, 10(5776), 1–49.
Dix, S., & Müller, P. (2021). Digital Image Processing Methods for The Evaluation of Optical Anisotropy Effects in Tempered Architectural Glass Using Photoelastic Measurements. Glass Structures & Engineering, 6(1), 3–19. https://doi.org/10.1007/s40940-020-00145-3
Hasanah, S. H., & Permatasari, S. M. (2020). Backpropagation Artificial Neural Network Classification Method in Statistics Students of Open University. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 14(2), 243–252.
Himilda, R., & Johan, R. A. (2021). Klasifikasi Jenis Kendaraan Menggunakan Metode Extreme Learning Machine (Vehicle Classification Using Extreme Learning Machine Method). JTIM : Jurnal Teknologi Informasi Dan Multimedia, 2(4), 237–243.
Imran, B., & Efendi, M. M. (2020). The Implementation of Extraction Feature Using Glcm And Back-Propagation Artificial Neural Network to Clasify Lombok Songket Woven Cloth. Jurnal TECHNO Nusa Mandiri, 17(2), 131–136.
Latief, M., & Yusuf, R. (2018). Gorontalo Medicinal Plants Image Identification System Using Artificial Neural Network with Back Propagation. IJITEE, 2(2), 45–50.
Lee, S. L., & Tseng, C. C. (2018). Digital Image Sharpening Using Integral Image Representation and Laplacian Operator. 2018 IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2018, 31–32. https://doi.org/10.1109/ICCE-China.2018.8448488
Mulyanto, A., Borman, R. I., Prasetyawana, P., & Sumarudin, A. (2020). 2D Lidar and Camera Fusion for Object Detection and Object Distance Measurement of ADAS Using Robotic Operating System ( ROS ). JOIV: International Journal on Informatics Visualization, 4(4), 231–236.
Mulyanto, A., Jatmiko, W., Mursanto, P., Prasetyawan, P., & Borman, R. I. (2021). A New Indonesian Traffic Obstacle Dataset and Performance Evaluation of YOLOv4 for ADAS. Journal of ICT Research and Applications, 14(3), 286–298. https://doi.org/10.5614/itbj.ict.res.appl.2021.14.3.6
Prasetyawan, P., Ahmad, I., Borman, R. I., Ardiansyah, A., Pahlevi, Y. A., & Kurniawan, D. E. (2018). Classification of the Period Undergraduate Study Using Back-propagation Neural Network. Proceedings of the 2018 International Conference on Applied Engineering, ICAE 2018. https://doi.org/10.1109/INCAE.2018.8579389
Purwanta, I. P. B. D., Adi, C. K., & Dewi, N. P. N. P. (2020). Backpropagation Neural Network for Book Classification Using the Image Cover. International Journal of Applied Sciences and Smart Technologies, 2(2), 179–196.
Setti, S., & Wanto, A. (2019). Analysis of Backpropagation Algorithm in Predicting the Most Number of Internet Users in the World. JOIN (Jurnal Online Informatika), 3(2), 110–115. https://doi.org/10.15575/join.
Wati, M., Haviluddin, Puspitasari, N., Budiman, E., & Rahim, R. (2019). First-order Feature Extraction Methods for Image Texture and Melanoma Skin Cancer Detection. Journal of Physics: Conference Series, 1230(1). https://doi.org/10.1088/1742-6596/1230/1/012013
Wiliani, N., Sani, A., & Andyanto, A. T. (2019). Klasifikasi Kerusakan Dengan Jaringan Syaraf Backpropagation pada Permukaan Solar Panel. Jurnal Ilmu Pengetahuan Dan Teknologi Komputer, 5(1), 89–94.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Hendra Mayatopani, Rohmat Indra Borman,Wahyu Tisno Atmojo, Arisantoso

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.










