PENERAPAN TRANSFORMASI DATA DISCRETE WAVELET TRANSFORM PADA NEURAL NETWORK UNTUK PREDIKSI HARGA SAHAM
Keywords:
Discrete Wavelet Transform, Harga Saham, Neural Network, PrediksiAbstract
Penelitian mengenai harga saham memang masih menarik bagi para peneliti. Seperti halnya dalam penelitian ini, data penutupan harga saham ANTM dijadikan sebagai set data yang diolah untuk kemudian dilakukan prediksi harga kedepannya. Adapun metode Neural Network merupakan metode yang sangat banyak digunakan peneliti karena berbagai keunggulannya. Sedangkan metode Discrete Wavelet Transform digunakan untuk melakukan transformasi data. Penggunaan transformasi data menggunakan Discrete Wavelet Transform diharapkan dapat meningkatkan kualitas data sehingga dapat meningkatkan performa Neural Network. Adapun berdasarkan eksperimen yang dilakukan dengan metode Neural Network dengan fungsi aktivasi Binary Sigmoid menunjukkan hasil RMSE 0,024 sampai dengan 0,022. Sedangkan dari hasil eksperimen Neural Network dengan fungsi aktivasi Binary Sigmoid yang dilakukan transformasi data dengan Discrete Wavelet Transform, telah menghasilkan RMSE yang lebih kecil daripada Eksperimen prediksi yang tanpa menggunakan transformasi data dengan Discrete Wavelet Transform yaitu 0,02 sampai dengan 0,018. Dari hasil perbandingan RMSE tersebut, terdapat selisih nilai rata-rata RMSE sebesar 0,0039. Artinya penerapan transformasi data menggunakan Discrete Wavelet Transform ini ternyata mampu meningkatkan performa prediksi dengan Neural Network yaitu dengan menghasilkan nilai error yang lebih kecil atau menghasilkan prediksi yang lebih akurat.
Downloads
References
A, Adebiyi, A., K, Charles, A., O, Marion, A., & O, Sunday, O. (2012). Stock Price Prediction using Neural Network with Hybridized Market Indicators. Journal of Emerging Trends in Computing and Information Sciences, 3(1), 1–9.
Anbazhagan, S., & Kumarappan, N. (2014). Day-ahead deregulated electricity market price forecasting using neural network input featured by DCT. Energy Conversion and Management, 78, 711–719. https://doi.org/10.1016/j.enconman.2013.11.031
Beaumont, A. N. (2014). Data transforms with exponential smoothing methods of forecasting. International Journal of Forecasting, 30(4), 918–927. https://doi.org/10.1016/j.ijforecast.2014.03.013
Bennett, C. J., Stewart, R. a., & Lu, J. W. (2014). Forecasting low voltage distribution network demand profiles using a pattern recognition based expert system. Energy, 67, 200–212. https://doi.org/10.1016/j.energy.2014.01.032
Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques.
Hofmann, M. (2009). Data Mining and Knowledge Discovery Series.
Kirchgässner, G., & Wolters, J. (2007). Introduction to Modern Time Series Analysis. https://doi.org/10.1007/978-3-540-73291-4
Montgomery, D. C. (2008). Introduction to Time Series Analysis and Forecasting.
Ouyang, Y., & Yin, H. (2014). A neural gas mixture autoregressive network for modelling and forecasting FX time series. Neurocomputing, 135, 171–179. https://doi.org/10.1016/j.neucom.2013.12.037
Rajput, V., & Bobde, S. (2016). Stock Market Forecasting Techniques: Literature Survey. International Journal of Computer Science and Mobile Computing, 5(6), 500–506. Retrieved from www.ijcsmc.com
Sundararajan, D. (2015). Discrete Wavelet Transform: A Signal Processing Approach. In Discrete Wavelet Transform: A Signal Processing Approach. https://doi.org/10.1002/9781119113119
Suryani, I. (2015). Penerapan Exponential Smoothing untuk Transformasi Data dalam Meningkatkan Akurasi Neural Network pada Prediksi Harga Emas. 1(2).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Indah Suryani

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Jurnal Riset Informatika has legal rules for accessing digital electronic articles uunder a Creative Commons Attribution-NonCommercial 4.0 International License . Articles published in Jurnal Riset Informatika, provide Open Access, for the purpose of scientific development, research, and libraries.










