SENTIMENT ANALYSIS OF DIGITAL WALLET SERVICE USERS USING NAÏVE BAYES CLASSIFIER AND PARTICLE SWARM OPTIMIZATION

  • Alvie Delia Cahyani (1) STMIK Nusa Mandiri
  • Tati Mardiana (2*) Universitas Bina Sarana Informatika
  • Laela Kurniawati (3) Sekolah Tinggi Manajemen Informatika dan Komputer Nusa Mandiri

  • (*) Corresponding Author

Keywords: Digital Wallet, Twitter, Sentiment Analysis, Naïve Bayes Classifier, Particle Swarm Optimization

Abstract

Digital wallet services provide many conveniences and benefits to its users. However, not all digital wallet service users have a positive opinion of the service. Sentiment analysis in this study aims to determine the opinions given by Dana and Isaku digital wallet service users whether they contain positive or negative opinions and apply the Naïve Bayes Classifier and Particle Swarm Optimization (PSO) method to the sentiment analysis of digital wallet service users. The Naïve Bayes Classifier method is used because it is simple, fast, high accuracy, and has good enough performance to classify data, but the Naïve Bayes Classifier has the disadvantage that each independent variable is assumed to cause a decrease in the accuracy value. Therefore, this research added an attribute weighting method, namely Particle Swarm Optimization (PSO) to increase the accuracy of the classification of the Naïve Bayes Classifier. This study uses data taken from Twitter as many as 490 tweet data. The test results using the confusion matrix and ROC curve show an increase in accuracy of the Naïve Bayes Classifier Dana digital wallet from 60.00% to 91.67% and I.Saku digital wallet from 53.23% to 85.00%. T-Test and Anova test results show that the two classification methods tested have significant (significant) differences in Accuracy values.

Downloads

Download data is not yet available.

References

Aaputra, S. A., Didi Rosiyadi, Windu Gata, & Syepry Maulana Husain. (2019). Sentiment Analysis Analisis Sentimen E-Wallet Pada Google Play Menggunakan Algoritma Naive Bayes Berbasis Particle Swarm Optimization. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 3(3), 377–382. https://doi.org/10.29207/resti.v3i3.1118

Budiansyah, A. (2020). GoPay & OVO Cs Kian Populer, Transaksi Tembus Rp 145 T. Retrieved April 23, 2020, from CNBC Indonesia website: https://www.cnbcindonesia.com/tech/20200204112543-37-135041/gopay-ovo-cs-kian-populer-transaksi-tembus-rp-145-t

Clinten, B. (2019). Pengguna Aktif Harian Twitter Indonesia Diklaim Terbanyak. Retrieved April 24, 2020, from Kompas website: https://tekno.kompas.com/read/2019/10/30/16062477/pengguna-aktif-harian-twitter-indonesia-diklaim-terbanyak

Devita, V. D. (2019). Siapa Aplikasi E-wallet dengan Pengguna Terbanyak di Indonesia? Retrieved June 11, 2020, from iPrice Group website: https://iprice.co.id/trend/insights/e-wallet-terbaik-di-indonesia/

Hermanto, H., Mustopa, A., & Kuntoro, A. Y. (2020). Algoritma Klasifikasi Naive Bayes Dan Support Vector Machine Dalam Layanan Komplain Mahasiswa. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 5(2), 211–220. https://doi.org/10.33480/jitk.v5i2.1181

Indonesia, B. (2020). Informasi Perizinan Penyelenggara dan Pendukung Jasa Sistem Pembayaran. Retrieved April 23, 2020, from Bank Indonesia website: https://www.bi.go.id/id/sistem-pembayaran/informasi-perizinan/uang-elektronik/penyelenggara-berizin/Contents/Default.aspx

Kurniawan, I., & Susanto, A. (2019). Implementasi Metode K-Means dan Naïve Bayes Classifier untuk Analisis Sentimen Pemilihan Presiden (Pilpres) 2019. Eksplora Informatika, 9(1), 1–10. https://doi.org/10.30864/eksplora.v9i1.237

Mahendrajaya, R., Buntoro, G. A., & Setyawan, M. B. (2019). Analisis Sentimen Pengguna Gopay Menggunakan Metode Lexicon Based Dan Support Vector Machine. Komputek, 3(2), 52. https://doi.org/10.24269/jkt.v3i2.270

Maulana, A. (2016). Twitter Rahasiakan Jumlah Pengguna di Indonesia. Retrieved April 24, 2020, from CNN Indonesia website: https://www.cnnindonesia.com/teknologi/20160322085045-185-118939/twitter-rahasiakan-jumlah-pengguna-di-indonesia

Pertiwi, M. W. (2019). Analisis sentimen opini publik mengenai sarana dan transportasi mudik tahun 2019 pada twitter menggunakan algoritma naïve bayes, neural network, KNN dan SVM. Inti Nusa Mandiri, 14(1), 27–32.

Pratama, K. A., Pradnyana, G. A., & Arthana, I. K. R. (2020). Pengembangan Sistem Cerdas Untuk Prediksi Daftar Kembali Mahasiswa Baru Dengan Metode Naive Bayes (Studi Kasus: Universitas Pendidikan Ganesha). Sintech Journal, 3(1), 22–34.

Saidah, S., & Mayary, J. (2020). Analisis Sentimen Pengguna Twitter Terhadap Dompet Elektronik Dengan Metode Lexicon Based Dan K – Nearest Neighbor. Jurnal Ilmiah Informatika Komputer, 25(1).

Published
2020-09-15
How to Cite
Cahyani, A., Mardiana, T., & Kurniawati, L. (2020). SENTIMENT ANALYSIS OF DIGITAL WALLET SERVICE USERS USING NAÏVE BAYES CLASSIFIER AND PARTICLE SWARM OPTIMIZATION. Jurnal Riset Informatika, 2(4), 241-250. https://doi.org/10.34288/jri.v2i4.160
Article Metrics

Abstract viewed = 116 times
PDF downloaded = 68 times