Stunting Early Warning Application Using KNN Machine Learning Method

  • Nani Purwati (1*) Universitas Bina Sarana Informatika
  • Gunawan Budi Sulistyo (2) Universitas Bina Sarana Informatika

  • (*) Corresponding Author
Keywords: Early Warning Application, k-NN Method, Classification, Stunting

Abstract

Stunting in toddlers is defined as a condition of failure to thrive due to chronic malnutrition in the long term. The problem of stunting in Indonesia is an issue that is still a concern for the Indonesian government. The prevalence of stunting in Indonesia is still quite high, coupled with the COVID-19 pandemic which has had quite an impact on the economic sector. For this reason, research on stunting is still a very important topic. This study aims to classify toddler stunting using the k-Nearest Neighbor classification algorithm, as well as build a website-based early detection application for stunting toddler cases using the CodeIgniter framework with the PHP programming language. The results of the research using the k-Nearest Neighbor Algorithm trial obtained a fairly high accuracy of 92.45%. The implementation of an early detection system for stunting cases has proven to help and facilitate health workers in classifying toddlers as stunted or not. This application is also useful as an archive and facilitates data reporting. In the application there are 8 main menus, namely the Puskesmas data menu, Posyandu data, toddler data, weighing, weighing results, development menu, stunting early warning menu which contains malnourished toddlers, stunted toddlers.

Downloads

Download data is not yet available.

References

Alamsyah, P. J., Khair, U., Bengkulu, U. M., Tadulako, U., Suroso, A., Bella, K. S., Takallar, G. K., Desa, B., Pemuda, T., Adat, T., & Agama, T. (2023). Upaya pemerintah dan masyarakat dalam penanganan dan pencegahan stunting. Jurnal Pengabdian Kolaborasi Dan Inovasi IPTEKS, 1(3), 191–198. https://journal.ppmi.web.id/index.php/JPKI2/article/view/33

Andryan, M., Faisal, M., & Kusumawat, R. (2023). K-Means Binary Search Centroid With Dynamic Cluster for Java Island Health Clustering. Jurnal Riset Informatika, 5(3), 269–276. https://doi.org/10.34288/jri.v5i3.511

Anggraini, Y., Pasha, D., Damayanti, D., & Setiawan, A. (2020). Sistem Informasi Penjualan Sepeda Berbasis Web Menggunakan Framework Codeigniter. Jurnal Teknologi Dan Sistem Informasi, 1(2), 64–70. https://doi.org/10.33365/jtsi.v1i2.236

Apriluana, G., & Fikawati, S. (2018). Analisis Faktor-Faktor Risiko terhadap Kejadian Stunting pada Balita (0-59 Bulan) di Negara Berkembang dan Asia Tenggara. Media Penelitian Dan Pengembangan Kesehatan, 28(4), 247–256. https://doi.org/10.22435/mpk.v28i4.472

Arisandi, R. R. R., Warsito, B., & Hakim, A. R. (2022). Aplikasi Naïve Bayes Classifier (Nbc) Pada Klasifikasi Status Gizi Balita Stunting Dengan Pengujian K-Fold Cross Validation. Jurnal Gaussian, 11(1), 130–139. https://doi.org/10.14710/j.gauss.v11i1.33991

Azis, H., Purnawansyah, P., Fattah, F., & Putri, I. P. (2020). Performa Klasifikasi K-NN dan Cross Validation Pada Data Pasien Pengidap Penyakit Jantung. ILKOM Jurnal Ilmiah, 12(2), 81–86. https://doi.org/10.33096/ilkom.v12i2.507.81-86

Beal, T., Tumilowicz, A., Sutrisna, A., Izwardy, D., & Neufeld, L. M. (2018). A review of child stunting determinants in Indonesia. Maternal and Child Nutrition, 14(4), 1–10. https://doi.org/10.1111/mcn.12617

Lestari, M. (2014). Penerapan Algoritma Klasifikasi Nearest Neighbor (K-NN) untuk Mendeteksi Penyakit Jantung. Faktor Exacta, 7(September 2010), 366–371. http://journal.lppmunindra.ac.id/index.php/Faktor_Exacta/article/view/290

Lestari, Z. D., Nafi’iyah, N., & Susilo, P. H. (2019). Sistem Klasifikasi Jenis Pisang Berdasarkan Ciri Warna HSV Menggunakan Metode K-NN. Seminar Nasional Teknologi Informasi Dan Komunikasi, 11–15. http://prosiding.unipma.ac.id/index.php/SENATIK/article/view/880

Lonang, S., & Normawati, D. (2022). Klasifikasi Status Stunting Pada Balita Menggunakan K-Nearest Neighbor Dengan Feature Selection Backward Elimination. Jurnal Media Informatika Budidarma, 6(1), 49. https://doi.org/10.30865/mib.v6i1.3312

Muqorobin, M., & Rozaq Rais, N. A. (2022). Comparison of PHP Programming Language with Codeigniter Framework in Project CRUD. International Journal of Computer and Information System (IJCIS), 3(3), 94–98. https://doi.org/10.29040/ijcis.v3i3.77

Ponum, M., Khan, S., Hasan, O., Mahmood, M. T., Abbas, A., Iftikhar, M., & Arshad, R. (2020). Stunting diagnostic and awareness: Impact assessment study of sociodemographic factors of stunting among school-going children of Pakistan. BMC Pediatrics, 20(1), 1–9. https://doi.org/10.1186/s12887-020-02139-0

Renyoet, B. S., Martianto, D., & Sukandar, D. (2016). Potensi Kerugian Ekonomi Karena Stunting Pada Balita Di Indonesia Tahun 2013. Jurnal Gizi Dan Pangan, 11(3), 247–254. https://journal.ipb.ac.id/index.php/jgizipangan/article/view/16461

Sapriatin, B., & Sianturi, A. F. (2021). Penerapan Teorema Bayes Mendeteksi Stunting pada Balita. Jurnal Media Informatika [Jumin], 3(1), 24–37. http://ejournal.sisfokomtek.org/index.php/jumin/article/view/203

Titimeidara, M. Y., & Hadikurniawati, W. (2021). Implementasi Metode Naïve Bayes Classifier Untuk Klasifikasi Status Gizi Stunting Pada Balita. Jurnal Ilmiah Informatika, 9(01), 54–59. https://doi.org/10.33884/jif.v9i01.3741

Wahyuningsih, W., Bukhari, A., Juliaty, A., Erika, K. A., Pamungkas, R. A., Siokal, B., Saharuddin, S., & Amir, S. (2022). Stunting Prevention and Control Program to Reduce the Prevalence of Stunting: Systematic Review Study. Open Access Macedonian Journal of Medical Sciences, 10(F), 190–200. https://doi.org/10.3889/oamjms.2022.8562

Waliyansyah, R. R., & Fitriyah, C. (2019). Perbandingan Akurasi Klasifikasi Citra Kayu Jati Menggunakan Metode Naive Bayes dan k-Nearest Neighbor (k-NN). Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 5(2), 157. https://doi.org/10.26418/jp.v5i2.32473

Widodo, S. W., & -, A. S. (2022). Development of Intelligent Software for Early Detection of Stunting in Toddlers Based on Anthropometry. Proceeding of International Conference on Science, Health, And Technology, 63–69. https://doi.org/10.47701/icohetech.v3i1.2279

Wiraguna, I. K. A., Setyati, E., & Pramana, E. (2022). Prediksi Anak Stunting Berdasarkan Kondisi Orang Tua Dengan Metode Support Vector Machine Dengan Study Kasus Di Kabupaten Tabanan-Bali. Smatika Jurnal, 12(01), 47–54. https://doi.org/10.32664/smatika.v12i01.662

Published
2023-06-10
How to Cite
Purwati, N., & Sulistyo, G. (2023). Stunting Early Warning Application Using KNN Machine Learning Method. Jurnal Riset Informatika, 5(3), 373-378. https://doi.org/10.34288/jri.v5i3.550
Article Metrics

Abstract viewed = 60 times
PDF downloaded = 49 times