Comparison of Conventional Machine Learning and Deep Neural Network Algorithms in the Prediction of Monkey-Pox
Abstract
Smallpox syndrome, also known as monkeypox, is an uncommon zoonotic viral infection brought on by the monkeypox virus, which belongs to the genus orthopoxvirus and family Poxviridae. Injury-related mortality in primates ranges from 1 to 10%. Data mining is a method for analyzing data. Deep neural networks and traditional machine learning methods are both used in the data analysis process. The Python programming language is used during the comparison procedure of this research algorithm to generate values for accuracy, f1 score, precision, recall, ROC, and AUC. The test results demonstrate that using sigmoid activation function parameters, the deep neural network algorithm's accuracy is 70.08%, F1 score is 79.18%, precision is 68.59%, recall is 62.65%, and AUC is 62.65%. In comparison to using conventional machine learning algorithms, the adagrad optimizer with learning rate 0.01 and 0.2 dropout has a higher value. The conventional machine learning model algorithm has the best xgboost, F1 score, precision, recall, and AUC scores when compared to other approaches: 64.40%, 64.45%, and 78.14%. According to these numbers, the average fairness disparity between deep neural network algorithms and traditional machine learning is 5.68%, F1 score is 13.79%, precision is 4.14%, recall is 1.75%, and AUC is 1.75%.
Downloads


Copyright (c) 2023 Cucu Ika Agustyaningrum, Rizka Dahlia, Omar Pahlevi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Jurnal Riset Informatika agrees to the following terms:
- The author retains the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-NonCommercial 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- The author is permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).
Read more about the Creative Commons Attribution-NonCommercial 4.0 Licence here: https://creativecommons.org/licenses/by-nc/4.0/.