Application of Fuzzy C Means and TOPSIS in Warehouse Selection at PT Warung Islami Bogor

  • Dewi Primasari (1) Universitas Ibn Khaldun Bogor
  • Khidir Zahid Muchtadiabillah (2*) Universitas Ibn Khaldun Bogor
  • Freza Riana (3) Universitas Ibn Khaldun Bogor

  • (*) Corresponding Author
Keywords: Cluster, Warehouse, Fuzzy C-Means, TOPSIS

Abstract

PT Warung Islami Bogor needs a warehouse to store goods that come from suppliers. Currently, the selection of warehouses is still done manually and is subjective. It is feared that this will lead to inaccuracies in renting the warehouse. So an application is needed to assist companies in choosing a warehouse. The fuzzy C-Means method can be used to classify warehouse data based on the characteristics of each group. After obtaining the next group is to make a rating of each group. One method that can be used is the TOPSIS method. The TOPSIS method can be applied to this application to rank the data warehouses that have been grouped. In the selection of this warehouse, there are several criteria. The criteria used are price, building area, distance from the head office (HO), parking area, and number of floors. The calculation process is done by dividing the warehouse data into several groups and ranking them to obtain the best recommendations. This application uses the PHP programming language with the Laravel framework—testing using a black box. Fuzzy C-Means and TOPSIS calculations show that Warehouse CCC is the best warehouse in Cluster 1 with a value of 0.797, and the Warehouse in Front of Gas Station Villa Bogor Indah is the best in Cluster 2 with a value of 0.613.

Downloads

Download data is not yet available.

References

Adifia, N. N. N., Ulinnuha, N., & Khaulasari, H. (2023). Pengelompokan Kecamatan di Wilayah Kabupaten Bojonegoro Berdasarkan Jenis Penyandang Masalah Kesejahteraan Sosial Menggunakan Fuzzy C-Means. Techno.Com, 22(2), 499–507. https://doi.org/10.33633/tc.v22i2.7485

Christian S. K. Aditya. (2021). Pemilihan Kalimat Representatif dengan Pengintegrasian Fuzzy C-Means Clustering dan TOPSIS (FCM-TOPSIS) untuk Peringkasan Dokumen. Prosiding SENTRA (Seminar Teknologi dan Rekayasa), (6), 358–364. https://doi.org/10.22219/sentra.v0i6.3924

Hidayat, Y., Nazir, A., Candra, R. M., Sanjaya, S., & Syafria, F. (2023). Clustering Vaksinasi Penyakit Mulut dan Kuku Menggunakan Algoritma Fuzzy C-Means. Journal of Computer Systems and Informatics (JoSYC), 4(3), 587–593. https://doi.org/10.47065/JOSYC.V4I3.3416

Himah, E. F., & Sulaiman, R. (2021). Implementasi Metode Fuzzy C-Means dan TOPSIS dalam Evaluasi Kinerja Keuangan Perusahaan Perbankan di Indonesia Berdasarkan Rasio Keuangan. MATHunesa: Jurnal Ilmiah Matematika, 9(1), 43–53. https://doi.org/10.26740/mathunesa.v9n1.p43-53

Nasution, K., & Hanum, L. (2020). Penerapan Metode Technique For Order By Similarity To Ideal Solution (TOPSIS) dalam Menentukan Game Online Paling Digemari. Buletin Utama Teknik, 15(2), 142–146. Retrieved from https://jurnal.uisu.ac.id/index.php/but/article/view/2319

Ningtyas, R. A., Nasution, Y. N., & Syaripuddin. (2022). Pengelompokan Kabupaten/Kota Di Pulau Kalimantan Dengan Fuzzy C-Means Berdasarkan Indikator Kemiskinan. EKSPONENSIAL, 13(2), 141–146. Retrieved from http://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/1054

Nugraha, G. S., & Riyandari, B. A. (2020). Implementasi Fuzzy C-Means untuk Pengelompokan Daerah Berdasarkan Indikator Kesehatan. (JurTI) Jurnal Teknologi Informasi, 4(1), 52–62. https://doi.org/10.36294/JURTI.V4I1.1222

Rohmah, D. S., & Saputro, D. R. S. (2020). Clustering Data dengan Algoritme Fuzzy c-Means Berbasis Indeks Validitas Partition Coefficient and Exponential Separation (PCAES). PRISMA, Prosiding Seminar Nasional Matematika, 3(1), 58–63. Retrieved from https://journal.unnes.ac.id/sju/index.php/prisma/article/view/37649

Sanusi, W., Zaky, A., & Afni, B. N. (2020). Analisis Fuzzy C-Means dan Penerapannya Dalam Pengelompokan Kabupaten/Kota di Provinsi Sulawesi Selatan Berdasarkan Faktor-faktor Penyebab Gizi Buruk. JMathCos (Journal of Mathematics, Computations, and Statistics), 2(1), 47–54. https://doi.org/10.35580/JMATHCOS.V2I1.12458

Sembiring, Y., & Hasugian, P. M. (2021). Sistem Pendukung Keputusan Menentukan Tingkat Resiko Penjualan Online Dengan Menggunakan Metode TOPSIS. Jurnal Nasional Komputasi Dan Teknologi Informasi (JNKTI), 4(1), 20–25. https://doi.org/10.32672/JNKTI.V4I1.2660

Susanto, G. M., Kosasi, S., David, Gat, & Kuway, S. M. (2020). Sistem Referensi Pemilihan Smartphone Android Dengan Metode Fuzzy C-Means dan TOPSIS. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 4(6), 1092–1101. https://doi.org/10.29207/resti.v4i6.2584

Syafi’ie, M., Tursina, & Yulianti. (2019). Sistem Pendukung Keputusan Pemilihan Daerah Prioritas Penanganan Stunting pada Balita Menggunakan Metode TOPSIS (Studi Kasus : Kota Pontianak). JUSTIN (Jurnal Sistem Dan Teknologi Informasi), 7(1), 33–39. https://doi.org/10.26418/JUSTIN.V7I1.27815

Widowati, D., & Ningtiyas, L. M. W. (2022). Analisis Penyimpanan dan Penempatan Barang Pada PT Bintang Dagang Internasional (Haistar) Surabaya Dalam Mendukung Ketersediaan Barang di Era Pandemi. Jurnal Ilmiah Administrasi Bisnis Dan Inovasi, 6(2), 100–114. https://doi.org/10.25139/JIABI.V6I2.5212

Widowati, R., & Septiawan, T. R. (2021). Administrasi Pergudangan pada CV Eastern Depo Jakarta. Jurnal Akuntansi & Bisnis, 7(01), 46–54. Retrieved from http://journal.stie-yppi.ac.id/index.php/JAB/article/view/376

Yuliadarnita, Dwi Wardana, A., & Toyib, R. (2023). Manajemen Pembagian Bantuan untuk UMKM Dinas Koperasi Menggunakan Metode FCM dan TOPSIS. JURNAL MEDIA INFOTAMA, 19(1), 61–68. https://doi.org/10.37676/JMI.V19I1.3423

Published
2023-06-09
How to Cite
Primasari, D., Muchtadiabillah, K., & Riana, F. (2023). Application of Fuzzy C Means and TOPSIS in Warehouse Selection at PT Warung Islami Bogor. Jurnal Riset Informatika, 5(3), 311-320. https://doi.org/10.34288/jri.v5i3.517
Article Metrics

Abstract viewed = 87 times
PDF downloaded = 37 times