Implementation of Machine Learning Algorithms for Early Detection of Cervical Cancer Based on Behavioral Determinants

  • Duwi Cahya Putri Buani (1*) Universitas Nusa Mandiri
  • Indah Suryani (2) Universitas Nusa Mandiri

  • (*) Corresponding Author
Keywords: Cervical Cancer, Machine Learning, Random Forest

Abstract

Cervical cancer is a disease that affects women and has the highest mortality rate after breast cancer. Early detection of cervical cancer is critical at this time, so cervical cancer patients are decreasing. Many women, especially in Indonesia, are less concerned about the dangers of cervical cancer, even though if detected earlier, this disease will be easier to treat. One alternative for early detection can use machine learning algorithms. The machine learning algorithms used in this study are Naïve Bayes (NB), Logistic Regression (LR), Decision Tree (DT), SVM, and Random Forest. In this study, a random under-sampling method was employed, which had no uses in any prior research. This technique makes the accuracy of the five algorithms even better. The research results show that NB has an accuracy rate of 91.67%, LR has an accuracy rate of 87.5%, DT has an accuracy rate of 81.81%, SVM has an accuracy rate of 75%, and RF has the highest accuracy rate of 94.45%. This research shows that the best model is RF or Random Forest

Downloads

Download data is not yet available.

Author Biography

Indah Suryani, Universitas Nusa Mandiri

 S. Pangribowo, “Beban Kanker di Indonesia,” Pus. Data Dan Inf. Kesehat. Kementeri. Kesehat. RI, pp. 1–16, 2019.

 D. N. Agustyawati, H. Fauzi, and A. Pratondo, “Perancangan Aplikasi Deteksi Kanker Serviks Menggunakan Metode Convolutional Neural Network,” eProceedings Eng., vol. 8, no. 4, pp. 3908–3924, 2021.

 G. S. Rifai, Achmad, “Model perilaku berbagi informasi kesehatan di kalangan pasien kanker serviks,” Rec. Libr. J., vol. 21, no. 2, pp. 139–157, 2017.

A. D. Pusparini, G. Hardianto, and N. Kurniasari, “Determinan Perilaku Deteksi Dini Kanker Serviks Metode Inspeksi Visual Asam Asetat (Iva),” Indones. Midwifery Heal. Sci. J., vol. 3, no. 1, pp. 51–61, 2021, doi: 10.20473/imhsj.v3i1.2019.51-61.

M. Triharini, E. Yunitasari, N. A. Armini, T. Kusumaningrum, R. Pradanie, and A. A. Nastiti, “Pemberdayaan Perempuan Melakukan Deteksi Dini Kanker Serviks Melalui Pelatihan Metode Reproductive Organ Self Examination (Rose) Sebagai Upaya Deteksi Dini Penyakit Kanker Serviks,” J. Pengabdi. Masy. Dalam Kesehat., vol. 1, no. 1, p. 14, 2019, doi: 10.20473/jpmk.v1i1.12326.

K. K. RI, “PANDUAN PROGRAM NASIONAL GERAKAN PENCEGAHAN DAN DETEKSI DINI KANKER KANKER LEHER RAHIM DAN KANKER PAYUDARA 21,” Buku Pandu., vol. 7, no. 2, pp. 107–15, 2015.

M. I. K. Dewi and N. L. P. Suaryani, “Pembangunan kesehatan merupakan suatu investasi untuk peningkatan kualitas sumber daya manusia dalam mendukung percepatan pembangunan nasional serta mencapai sasaran Millenium Development Goals ( MDG ’ s ) . Salah satu sasaran MDG ’ s adalah peningkatan k,” vol. 62, pp. 134–142, 2013.

R. A. Setyani, “Penerapan Program Deteksi Dini Kanker Serviks Sebagai Upaya Pemberdayaan Wanita Di Sleman Yogyakarta,” Kebidanan, Fak. Ilmu Kesehat. Univ. Respati Yogyakarta, vol. III, no. 2, p. 12, 2018.

 Sobar, R. Machmud, and A. Wijaya, “Behavior determinant based cervical cancer early detection with machine learning algorithm,” Adv. Sci. Lett., vol. 22, no. 10, pp. 3120–3123, 2016, doi: 10.1166/asl.2016.7980.

A. D. Wibisono, S. Dadi Rizkiono, and A. Wantoro, “Filtering Spam Email Menggunakan Metode Naive Bayes,” TELEFORTECH  J. Telemat. Inf. Technol., vol. 1, no. 1, pp. 9–17, 2020, doi: 10.33365/tft.v1i1.685.

D. Feblian and D. U. Daihani, “Implementasi Model Crisp-Dm Untuk Menentukan Sales Pipeline Pada Pt X,” J. Tek. Ind., vol. 6, no. 1, 2017, doi: 10.25105/jti.v6i1.1526.

I. M. Parapat, M. T. Furqon, and Sutrisno, “Penerapan Metode Support Vector Machine (SVM) Pada Klasifikasi Penyimpangan Tumbuh Kembang Anak,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 10, pp. 3163–3169, 2018, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/2577.

S. Bahri and A. Lubis, “Metode Klasifikasi Decision Tree Untuk Memprediksi Juara English Premier League,” J. Sintaksis, vol. 2, no. 1, pp. 63–70, 2020.

N. Wuryani and S. Agustiani, “Random Forest Classifier untuk Deteksi Penderita COVID-19 berbasis Citra CT Scan,” J. Tek. Komput., vol. 7, no. 2, pp. 187–193, 2021, doi: 10.31294/jtk.v4i2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

References

Agustyawati, D. N., Fauzi, H., & Pratondo, A. (2021). Perancangan Aplikasi Deteksi Kanker Serviks Menggunakan Metode Convolutional Neural Network. EProceedings of Engineering, 8(4), 3908–3924.

Aisah, S. N., Hafiyusholeh, M., & Ulinnuha, N. (2022). Klasifikasi Kanker Serviks Menggunakan Metode Extreme Learning Machine (ELM). Komputek, 6(3), 68–75. Retrieved from https://studentjournal.umpo.ac.id/index.php/komputek/article/view/68

Arifin, S. S., Siregar, A. M., Ratna, A., & Mudzakir, T. Al. (2021). Klasifikasi Penyakit Kanker Serviks Menggunakan Algoritma Support Vector Machine ( SVM). (Ciastech), 521–528.

Bahri, S., & Lubis, A. (2020). Metode Klasifikasi Decision Tree Untuk Memprediksi Juara English Premier League. Jurnal Sintaksis, 2(1), 63–70. Retrieved from http://www.jurnal.stkipalmaksum.ac.id/index.php/Sintaksis/article/view/47

Buani, D. C. P., & Suryani, I. (2022). Independent Research Report. Jakarta.

Dasmasela, R., Tomasouw, B. P., & Leleury, Z. A. (2021). Penerapan Metode Support Vector Machine (SVM) untuk Mendeteksi Penyalahgunaan Narkoba. Matematika, Statistik Dan Terapannya, 1(02), 93–101.

Feblian, D., & Daihani, D. U. (2017). Implementasi Model Crisp-Dm Untuk Menentukan Sales Pipeline Pada Pt X. Jurnal Teknik Industri, 6(1). https://doi.org/10.25105/jti.v6i1.1526

Firqiani, H. N., Kustyo, A., & Giri, E. P. (2008). Seleksi Fitur Menggunakan Fast Correlation Based Filter pada Algoritma Voting Feature Intervals 5. Jurnal Ilmiah Ilmu Komputer, 6(2), 245184.

Hasanah, M. A., Soim, S., & Handayani, A. S. (2021). Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir. Journal of Applied Informatics and Computing, 5(2), 103–108. https://doi.org/10.30871/jaic.v5i2.3200

Hidayah, U. R., Cholissodin, I., & Adikara, P. P. (2019). Klasifikasi Penyakit Kanker Serviks dengan Extreme Learning Machine. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(7), 6575–6582. Retrieved from http://j-ptiik.ub.ac.id

Irmayani1, B. A. (2017). Klasifikasi Stadium Kanker Serviks Menggunakan Sistem Pengambilan Keputusan Decision Tree. Prosiding Seminar Nasional, 04(1), 455–464. Retrieved from http://journal.uncp.ac.id/index.php/proceding/article/view/1281

Matovani, D., & Hadiono, K. (2018). Implementasi Algoritma Apriori Untuk Membantu Proses Persediaan Barang. Jurnal Dinamika Informatika, 10(2), 53–59. https://doi.org/10.35315/informatika.v10i2.8133

Pangribowo, S. (2019). Beban Kanker di Indonesia. Pusat Data Dan Informasi Kesehatan Kementerian Kesehatan RI, 1–16.

Parapat, I. M., Furqon, M. T., & Sutrisno. (2018). Penerapan Metode Support Vector Machine (SVM) Pada Klasifikasi Penyimpangan Tumbuh Kembang Anak. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(10), 3163–3169.

Schonlau, M., & Zou, R. Y. (2020). The random forest algorithm for statistical learning. Stata Journal, 20(1), 3–29. https://doi.org/10.1177/1536867X20909688

Setyani, R. A. (2018). Penerapan Program Deteksi Dini Kanker Serviks Sebagai Upaya Pemberdayaan Wanita Di Sleman Yogyakarta. Kebidanan, Fakultas Ilmu Kesehatan Universitas Respati Yogyakarta, III(2), 12.

Sobar, Machmud, R., & Wijaya, A. (2016). Behavior determinant based cervical cancer early detection with machine learning algorithm. Advanced Science Letters, 22(10), 3120–3123. https://doi.org/10.1166/asl.2016.7980

Wijaya, Y. A., Bahtiar, A., Kaslani, & R, N. (2021). Analisa Klasifikasi menggunakan Algoritma Decision Tree pada Data Log Firewall. Jurnal Sistem Informasi Dan Manajemen, 9(3), 256–264. https://doi.org/10.47024/JS.V9I3.303

Winarni, W., & Suratih, K. (2020). Mengenal Lebih Dini Kanker Leher Rahim Bersama Forum Kajian Dan Komunikasi Muslimah. GEMASSIKA : Jurnal Pengabdian Kepada Masyarakat, 4(2), 186. https://doi.org/10.30787/gemassika.v4i2.569

Wongkar, R., Angka, R. N., & Angeline, R. (2022). Karakteristik Pasien Kanker Stadium 4 yang Mendapatkan Perawatan Paliatif di Rumah Sakit X. Jurnal Kedokteran Meditek, 28(2), 126–132. https://doi.org/10.36452/jkdoktmeditek.v28i2.2235

Wuryani, N., & Agustiani, S. (2021). Random Forest Classifier untuk Deteksi Penderita COVID-19 berbasis Citra CT Scan. Jurnal Teknik Komputer, 7(2), 187–193. https://doi.org/10.31294/jtk.v4i2

Published
2022-12-01
How to Cite
Buani, D., & Suryani, I. (2022). Implementation of Machine Learning Algorithms for Early Detection of Cervical Cancer Based on Behavioral Determinants. Jurnal Riset Informatika, 5(1), 445-450. https://doi.org/10.34288/jri.v5i1.453
Article Metrics

Abstract viewed = 108 times
PDF downloaded = 107 times