EXPERT SYSTEM DEVELOPMENT TO IDENTIFY EMPLOYEE PERSONALITY TYPES USING DEMPSTER SHAFER THEORY
Abstract
Human resources are an important asset for the company to develop and realize the company's goals. One of the efforts to optimize the capacity of employees is to know their personality. Personality is the form possessed by an individual in behaving and all the characteristics that distinguish one individual from another. Knowing the personality of employees is important for the company and the employees themselves. Because by knowing a person's personality, the company can maximize the potential of employees and can place certain positions that suit the personality of the employee. This study aims to implement dempster-shafer theory on an inference engine in building an expert system to identify employee personality types. Dempster-shafer theory can perform probability calculations so that evidence can be carried out based on the level of confidence and logical reasoning. The system developed is able to identify the personality type of the employee through the nature or symptoms that exist in the employee. In addition, the system can display the results of the diagnosis with an explanation of the personality type, its nature in work and occupations or positions that are suitable for that personality type. Based on the results of the accuracy test obtained from the comparison of expert system diagnoses with the analysis of an expert, the accuracy value reaches 85%.
Downloads
References
Annisa, R. (2018). Sistem Pakar Metode Certainty Factor Untuk Mendiagnosa Tipe Skizofrenia. IJCIT (Indonesian Journal on Computer and Information Technology), 3(1), 40–46.
Ardiansyah, R., Fauziah, F., & Ningsih, A. (2019). Sistem Pakar Untuk Diagnosa Awal Penyakit Lambung Menggunakan Metode Dempster-Shafer. Jurnal Ilmiah Teknologi Dan Rekayasa, 24(3), 182–196.
Borman, R. I., Napianto, R., Nurlandari, P., & Abidin, Z. (2020). Implementasi Certainty Factor Dalam Mengatasi Ketidakpastian Pada Sistem Pakar Diagnosa Penyakit Kuda Laut. JURTEKSI (Jurnal Teknologi Dan Sistem Informasi), VII(1), 1–8.
Darmansah, D. D., Chairuddin, I., & Putra, T. N. (2021). Perancangan Sistem Pakar Tipe Kepribadian Menggunakan Metode Forward Chaining Berbasis Web. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 8(3), 1200–1213. https://doi.org/10.35957/jatisi.v8i3.1033
Herdiansah, A., Borman, R. I., Nurnaningsih, D., Sinlae, A. A. J., & Hakim, R. R. Al. (2022). Klasifikasi Citra Daun Herbal Dengan Menggunakan Backpropagation Neural Networks Berdasarkan Ekstraksi Ciri Bentuk. JURIKOM (Jurnal Riset Komputer), 9(2), 388–395. https://doi.org/10.30865/jurikom.v9i1.3846
Mayatopani, H., Borman, R. I., Atmojo, W. T., & Arisantoso, A. (2021). Classification of Vehicle Types Using Backpropagation Neural Networks with Metric and Ecentricity Parameters. Jurnal Riset Informatika, 4(1), 65–70. https://doi.org/10.34288/jri.v4i1.293
Monica, T., & Borman, R. I. (2017). Implementasi Konsep Media Sosial Dalam Sistem Informasi Kegiatan Kesiswaan (Studi Kasus : SMK XYZ). Jurnal Tekno Kompak, 11(2), 33–37. https://doi.org/10.33365/jtk.v11i2.64
MZ, A. R., Wijaya, I. G. P. S., & Bimantoro, F. (2020). Sistem Pakar Diagnosa Penyakit Kulit pada Manusia dengan Metode Dempster Shafer. Journal of Computer Science and Informatics Engineering (J-Cosine), 4(2), 129–138. https://doi.org/10.29303/jcosine.v4i2.285
Napianto, R., Rahmanto, Y., Borman, R. I., Lestari, O., & Nugroho, N. (2018). Dhempster-Shafer Implementation in Overcoming Uncertainty in the Inference Engine for Diagnosing Oral Cavity Cancer. CSRID (Computer Science Research and Its Development Journal), 13(1), 45–53.
Nasution, Y. R., & Khairuna, K. (2017). Sistem Pakar Deteksi Awal Penyakit Tuberkulosis Dengan Metode Bayes. Klorofil, 1(1), 17–23.
Putri, N. A. (2018). Sistem Pakar untuk Mengidentifikasi Kepribadian Siswa Menggunakan Metode Certainty Factor dalam Mendukung Pendekatan Guru. INTECOMS: Journal of Information Technology and Computer Science, 1(1), 78–90. https://doi.org/10.31539/intecoms.v1i1.164
Rahmanita, E., Agustiono, W., & Juliyanti, R. (2019). Sistem Pakar Diagnosa Penyakit Saluran Pencernaan Dengan Perbandingan Metode Forward Chaining Dan Dempster Shafer. Jurnal Simantec, 7(2), 82–89. https://doi.org/10.21107/simantec.v7i2.6743
Sucipto, A., Fernando, Y., Borman, R. I., & Mahmuda, N. (2019). Penerapan Metode Certainty Factor Pada Diagnosa Penyakit Saraf Tulang Belakang. Jurnal Ilmiah FIFO, 10(2), 18. https://doi.org/10.22441/fifo.2018.v10i2.002
Sya’baniah, S. I., Saryono, O., & Herlina, E. (2019). Pengaruh Sikap dan Kepribadian Terhadap Kinerja Pegawai (Studi pada Dinas Sosial Kabupaten Ciamis). Business Manajement and Entrepreneurship Journal, 1(4), 162–177. Retrieved from https://jurnal.unigal.ac.id
Zulkarnaen, W. (2018). Pengaruh Tipe Kepribadian Terhadap Stress Karyawan Pada CV. Adi Jaya Nusantara. Jurnal Abdimas Bsi, 3(1), 533–540. Retrieved from http://ejournal.bsi.ac.id/ejurnal/index.php/abdimas


Copyright (c) 2022 Julia Fajaryanti, Rogayah Rogayah

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Jurnal Riset Informatika agrees to the following terms:
- The author retains the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-NonCommercial 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- The author is permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).
Read more about the Creative Commons Attribution-NonCommercial 4.0 Licence here: https://creativecommons.org/licenses/by-nc/4.0/.